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Abstract

We show how importance-driven refinement and a wavelet basis can
be combined to provide an efficient solution to the global illumina-
tion problem with glossy and diffuse reflections. Importance is used
to focus the computation on the interactions having the greatest im-
pact on the visible solution. Wavelets are used to provide an effi-
cient representation of radiance, importance, and the transport oper-
ator. We discuss a number of choices that must be made when con-
structing a finite element algorithm for glossy global illumination.
Our algorithm is based on the standard wavelet decomposition of
the transport operator and makes use of a four-dimensional wavelet
representation for spatially- and angularly-varying radiance distri-
butions. We use a final gathering step to improve the visual quality
of the solution. Features of our implementation include support for
curved surfaces as well as texture-mapped anisotropic emission and
reflection functions.

1 Introduction

Radiosity algorithms assume that all reflection in a scene is ideally
diffuse. This assumption, while making the computation of global
illumination more tractable, ignores important effects such as glossy
highlights whose intensity varies smoothly with direction. Though
more expensive, the simulation of directional reflection is essential
for realistic image synthesis. In this paper, we consider the glossy
global illumination problem, whose goal is to find the equilibrium
distribution of light in a scene with surfaces that are glossy reflec-
tors. The glossy global illumination problem includes radiosity as a
special case.

This article explores a promising approach to solving the glossy
global illumination problem: extending the finite element method
used in radiosity algorithms. Designing a finite element algorithm
for glossy global illumination involves a number of choices, as sum-
marized below.

The first choice is in the parameterization of the unknown light dis-
tribution. One possibility is to use radiance distributions, which are
functions of surface position and direction [21, 34]. The alternative
is to use two-point transport intensities, which are functions of two
surface positions [3, 30]. We describe our motivation for using ra-
diance distributions.

A second area of choice in designing a glossy global illumination
algorithm is that of basis functions. One can use a single fixed reso-
lution or a hierarchy of multiresolution basis functions. The benefits
of a multiresolution representation are apparent from the radiosity
algorithms presented by Hanrahan et al. [19] and Gortler et al. [18,
29]. If we choose a multiresolution basis for glossy global illumi-
nation, there are further choices as well: we can use scaling func-
tions or wavelets; we can choose from many types of wavelets; we
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can construct “standard” or “non-standard” tensor products of basis
functions; and we can use the standard or the non-standard opera-
tor decomposition. We have chosen to represent radiance in a ba-
sis consisting of four-dimensional non-standard tensor products of
Haar wavelets. These basis functions interact to simulate light trans-
port through a standard decomposition of the light transport opera-
tor.

As a third area of choice, one must decide whether or not a view-
independent solution is necessary. A view-dependent solution
can be computed more efficiently using importance, as shown by
Smits et al. [37] for radiosity. Assuming we are interested in accel-
erating our solution procedure using importance, we must choose
between incident and exitant importance. We describe a formula-
tion of exitant importance that satisfies the same transport equation
as radiance, and that can be represented and transported identically.

The last area of choice is in the rendering of the solution. A com-
plete solution to the global illumination problem should be both
physically accurate and visually pleasing. However, many algo-
rithms produce solutions that are numerically accurate yet still con-
tain artifacts that are very obvious to the human eye. We therefore
use a final gathering step [23, 28, 36] to improve the visual quality
of the solution.

We have implemented an algorithm based on the choices outlined
above. Other features of the implementation include support for
curved surfaces and anisotropic bidirectional reflectance distribu-
tion functions (BRDFs). Texture maps can be used to describe the
spatial variation of both emission and reflection.

A preliminary version of this paper was presented at the fifth Eu-
rographics Workshop on Rendering [9]. In the current article, we
give motivations for the choices we made. We also present a proof
concerning exitant directional importance. This article extends our
previous algorithm by including an adaptive numerical integration
method and a more efficient final gathering step. New practical con-
tributions include descriptions of our data structures, as well as tests
of convergence and convergence rates.

The remainder of this paper is organized as follows: Section 2 moti-
vates the use of radiance distributions, gives a formal description of
radiance and light transport, and shows how radiance and the light
transport equation can be discretized using a finite element basis.
Section 3 introduces a wavelet basis for radiance distributions. Sec-
tion 4 describes a type of importance that is convenient for a finite el-
ement represention of radiance. Section 5 presents our importance-
driven glossy global illumination algorithm, which uses a wavelet
basis for directional radiance and importance distributions. Sec-
tion 6 provides significant details of our implementation. Finally,
Section 7 describes our results, and Section 8 contains a conclusion
and suggestions for future work.

2 Finite elements for radiance

To determine the exact solution to the glossy global illumination
problem for a particular scene, we would have to find the amount of



light leaving all points in all directions. To date, it has not been pos-
sible to derive analytical solutions for non-trivial scenes with glossy
surfaces. Instead, we compute an approximate solution represented
by a weighted sum of a finite number of basis functions.

In this section, we first discuss the domain of the basis functions,
contrasting two-point transport intensities against radiance distribu-
tions. Then we give a formal description of radiance and discuss
how the continuous radiance function and transport operator can be
discretized to facilitate representation and efficient transport.

2.1 Radiance distributions vs. two-point transport intensities

Two fundamentally different representations of light have been
used for glossy global illumination. Immel et al. [21] and Sil-
lion et al. [34] represent the light in a scene as radiance distribu-
tions, which are functions of two spatial and two angular variables
on each surface patch. By contrast, Aupperle and Hanrahan [3], Pat-
tanaik and Bouatouch [26], and Schröder and Hanrahan [30] use
“two-point transport intensities,” which are functions of four spa-
tial variables; these functions represent the amount of light traveling
from a point on one patch to a point on another.

We choose to represent light as radiance distributions, as did Im-
mel et al. and Sillion et al., for two reasons. First, assuming that the
scene is initially split into p patches, the coarsest possible represen-
tation of radiance requires only one basis function per patch when
we use radiance distributions, but it requires p basis functions per
patch when we use two-point transport intensities. Therefore, the
initial, very coarse solution of the light transport equation requires
O(p2) interactions between radiance distributions on patches, as op-
posed to O(p3) interactions for matching two-point transport inten-
sities. Second, clustering algorithms for radiosity are very effective
at reducing the number of initial interactions by grouping nearby
patches together [32, 35], and the only clustering methods for glossy
reflections that we are aware of use radiance distributions [7, 33].

2.2 Radiance

We now give a formal description of radiance and light transport.
Let x and y be points in space, and let ! and !xy be directions (!xy

is the direction from x to y, so !xy = �!yx). The radiance L(y,!)
is defined as the power emanating fromy, per unit solid angle in the
direction !, per unit projected area perpendicular to that direction.
Radiance L is measured in [watt �meter�2 � steradian�1].

The equilibrium distribution of radiance satisfies the followinglight
transport equation [12]:

L(y,!) = Le(y,!) +

Z
x

fr(!xy, y,!) G(x, y) L(x,!xy) dx . (1)

This equation states that the radiance L from a point y in direc-
tion ! is the sum of two terms: emitted radiance Le and radi-
ance reflected from all other points x. An infinitesimal area around
point x is written dx. The term fr(!xy, x,!) is the bidirectional re-
flectance distribution function, or BRDF, and describes the ratio of
reflected radiance (in direction!) to the differential irradiance (from
direction !xy) that causes it. The BRDF has units [steradian�1].
As a consequence of Helmholtz reciprocity, the BRDF satisfies
fr(�!0, x,!) = fr(�!, x,!0). Finally, the geometric term G(x, y) is
given by

G(x, y) � V(x, y) �
cos �x cos �y

jjx� yjj2
,

where V(x, y) is a visibility term that is 1 or 0, depending on whether
or not x and y are visible to one another, and�x and �y are the angles

x
L(x, !)

!xy

y

L(y,!)

Figure 1 Light transport from point x to point y.

between the line segment xy and the respective normals of differ-
ential areas at x and y. The geometric term describes how radiance
leaving a differential area at x in the direction toward y arrives at y.
The geometric term has units [steradian�meter�2], and is symmetric
in its arguments: G(x, y) = G(y, x). Some of these terms are illus-
trated in Figure 1.

The light transport equation (1) can be rewritten in operator form as

L = Le + T L . (2)

Here the transport operator T is defined by

(T L)(y,!) �

Z
x

fr(!xy, y,!) G(x, y) L(x,!xy) dx ,

where (T L)(y,!) denotes the result ofT operating on L(x,!) to pro-
duce a function whose argument is (y,!).

2.3 Discretization of radiance

In this section and the following one, we summarize the steps we
use to convert the glossy global illumination problem into a sys-
tem of linear equations. These steps amount to an application of the
Galerkin method of finite elements [44].

Let B(x,!) = [b1(x,!) b2(x,!) � � � ] be a basis for the space of
radiance distributions. The unknown radiance distributionL can be
expressed as a linear combination of the basis functionsbi(x,!) with
unknown coefficients `i:

L(x,!) =
1X
i=1

`i bi(x,!) .

This equation can be written in matrix form as L(x,!) = B(x,!)L,
where L is an infinite column matrix whose i-th entry is `i. When no
confusion can arise, we suppress the arguments and simply write

L = BL .

In the original formulation of radiosity, piecewise-constant func-
tions were used as a basis for spatial variation [17]. In subse-
quent work on radiosity, Heckbert [20], Zatz [43], and Troutman
and Max [41] used orthogonal polynomials, and Gortleret al. [18]
used wavelets. In the more general context of radiance, the distribu-
tion of light leaving a patch has both spatial and angular variation.
Immel et al. [21] used piecewise-constant basis functions for both
spatial and angular variation. Later, Sillion et al. [34] used spheri-
cal harmonics for the angular variation and piecewise-constant ba-
sis functions for the spatial variation. In Section 3 we motivate and
introduce our choice of basis, a hierarchical wavelet basis for both
spatial and angular variation.

In order to project a radiance distribution onto the basis, we need
an inner product and a dual basis. Lethf j gi denote the standard in-
ner product, hf j gi �

R
!y

f (y,!) g(y,!) dy d!. Let [hF jGi] be the
outer product of F and G, where each element of the outer prod-
uct is the inner product of elements of F and G. For example, if
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F = [f1 f2 � � � ] and G = [g1 g2 � � � ] are two row matrices of func-
tions, then [hF jGi] is the matrix whose ij-th entry is hfi j gji. Like-
wise, [hF j gi] is the column matrix consisting of elements hf1 j gi,
hf2 j gi, . . . .

Let the dual basis associated with B be denoted B =
[b1(x,!) b2(x,!) � � � ]. The dual basis is characterized by
the relation hbi j bji = �ij, or in matrix form [hB jBi] = I, where I is
the identity matrix. Orthonormal bases are a special case: they are
self-dual, meaning that B = B.

2.4 Discrete light transport

Regardless of the choice of basis functions, we can obtain a system
of equations for the unknown entries of L by substituting L = BL
and Le = BLe into the light transport equation (2), and using linear-
ity of the operator T to yield

BL = BLe + T (BL) = BLe + (T B)L .

By applying the linear operator [hB j �i] to both sides of this equa-
tion, we get

[hB jBLi] = [hB jBLei] + [hB j (T B)Li] .

Using linearity and the duality relation, we arrive at thediscrete light
transport equation,

L = Le + TL . (3)

In this infinite system of linear equations, T � [hB j T Bi] is an in-
finite matrix representing the transport operatorT . The rs-th entry
of T is a transport coefficient, representing the influence of the co-
efficient of bs on the coefficient of br. It can be written explicitly
as

Tr s = hbr j T bsi

= hbr j
R

x
fr(!xy, y,!) G(x, y) bs(x,!xy) dxi

=

Z
!y

br(y,!)

Z
x

fr(!xy, y,!) G(x, y) bs(x,!xy) dx dy d! , (4)

where the notation r s serves to emphasize that Tr s represents
the influence of the sender s on the receiver r. In this integral, the
domain of x is the spatial support of the sending basis function bs,
the domain of y is the spatial support of the receiving basis func-
tion br, and the domain of ! is the angular support of br (directions
on a hemisphere above y).

3 A wavelet basis for radiance

In this section we construct a multiresolution basis for efficiently
representing radiance distributions. Results by Beylkinet al. [4, 5],
Alpert [1], Gortler et al. [18], Hanrahan et al. [19] and others indi-
cate that significant performance gains can be achieved by using a
multiresolution basis.

By contrast, Immel et al. [21] used a single-resolution representa-
tion of radiance distributions using piecewise-constant basis func-
tions. Sillion et al. [34] used spherical harmonics as basis func-
tions for the angular variation of radiance. Their implementation
also used a single-resolution representation: each distribution uses a
fixed number of spherical harmonics. Unfortunately, there is no ob-
vious way to make a useful multiresolution basis from spherical har-
monics because they have global support (each spherical harmonic
is nonzero over the entire sphere). Therefore it is possible for all

spherical harmonics in one location to interact with all those in an-
other location. In contrast, the wavelets we will consider have com-
pact support: a sending wavelet bs will only interact with receiving
wavelets br that have spatial support within the directional support
of bs. The compact directional support of wavelet basis functions
guarantees that many of the transport coefficients will be zero. In
short, the transport matrix T is sparse in a wavelet basis, but dense
in a spherical harmonics basis.

In what follows, we first present some background on multiresolu-
tion analysis, and then describe one-dimensional wavelet bases and
how they can be extended to the four-dimensional bases necessary
for representing radiance distributions.

3.1 Multiresolution analysis

A straightforward method for solving the discrete light transport
equation (3) approximately would represent the solution with a
fixed, large number of basis functions, and transport light between
all pairs of basis functions to compute the solution. Ifn is the num-
ber of basis functions, this method would requireO(n2) interactions
to compute a solution.

Instead, we use a hierarchical, or multiresolution, method that re-
sults in only O(n) or O(n log n) interactions (depending on the spe-
cific multiresolution method chosen). With this method, we first
compute a very coarse solution and then refine the representation
and interactions based on that solution. After the refinement, an
improved solution can be computed, new refinements can be per-
formed, and so on. The multiresolution method exploits the fact
that in some parts of the scene radiance distributions can be rep-
resented with sufficient accuracy using only a few basis functions.
Furthermore, even where many basis functions are required, each
basis function will interact with just a few others.

A convenient framework for studying multiresolution bases is pro-
vided by multiresolution analysis as formulated by Mallat [24],
which we will describe briefly here. A more detailed exposition
on the use of multiresolution bases in graphics is given by Stoll-
nitz et al. [38, 39]; see the books by Chui [10] and Daubechies [14]
for more mathematical treatments.

There are two basic ingredients for Mallat’s multiresolution analy-
sis: an infinite chain of nested linear function spaces V0 � V1 �
V2 � � � �, and an inner product hf j gi defined on any pair of func-
tions f , g 2 Vj. The space Vj contains functions of resolution j, with
resolution increasing as j increases. Scaling functions refer to bases
for the spaces Vj.

A function can be approximated by a weighted sum of scaling func-
tions. Alternatively, we can represent the same approximation as
coarse scaling functions in V0 along with detail at finer and finer
resolution. Detail is accounted for by functions in the orthogonal
complement spaces Wj defined by

Wj � ff 2 Vj+1 j hf j gi = 0 8g 2 Vjg.

Wavelets refer to bases for the orthogonal complement spaces Wj,
and the spaces Wj are usually called wavelet spaces.

Orthogonal complements are often written as Vj+1 = Vj �Wj since,
intuitively, wavelet space Wj includes the functions that are in Vj+1

but “missing” from Vj. More formally, any function f j+1 2 Vj+1 can
be written uniquely as an orthogonal decomposition f j+1 = f j + f j

?,
where f j 2 Vj and f j

? 2 Wj. The space Vj can be fully decomposed
as

Vj = V0 �W0 � � � � �Wj�1.

Therefore, a multiresolution basis for Vj can be formed by selecting
a scaling function basis for V0 together with wavelet bases for the

3



0

1

1
u�0

0(u):

0

1

1
u�1

0(u):

0

1

1
u�1

1(u):

�1

1
1 u 0

0(u):

�1

1
1 u 1

0(u):

�1

1
1 u 1

1(u):

Figure 2 Some box functions �j
i(u) and Haar wavelets j

i (u).

3D surface patch

-

- u1

6
u2

2D parameter space

Figure 3 Spatial projection: mapping between 3D surface patch and
2D parameter space.

spaces W0, . . . , Wj�1. The scaling functions spanning V0 represent
coarse variation, while the wavelets provide detail at increasing res-
olutions.

3.2 Choice of wavelet basis

The simplest multiresolution basis is the Haar basis in one di-
mension. The space Vj consists of piecewise-constant functions
on [0, 1] with discontinuities atf0, 1=2j, 2=2j, . . . , 1g. The space Vj

is spanned by piecewise-constant scaling functions�j
i(u), known as

box functions. The wavelet spaces Wj are spanned by piecewise-
constant functions j

i(u), known as Haar wavelets. A few box func-
tions and Haar wavelets are shown in Figure 2. The Haar basis con-
sists of the single coarsest scaling function�0

0(u) along with all the
wavelets  j

i .

There are many alternatives to the Haar basis, each with advan-
tages and disadvantages. Like the Haar basis, flatlets and multi-
wavelets are suited to the bounded domains over which we define
radiance distributions [18]; B-spline wavelets can also be adapted to
a bounded interval [11, 38, 39]. These higher-order basis functions
are appealing because of their improved convergence properties, but
they also require more costly numerical integration rules than the
Haar basis functions. Our algorithm uses the Haar basis because
of its simplicity and convenience, but further research may demon-
strate that the benefits of other wavelet bases outweigh their costs.
In fact, Schröder and Hanrahan [30] compared a number of wavelet
bases for radiance and, after testing convergence rates and integra-
tion expense, found that higher-order wavelets best suited their im-
plementation.

3.3 A convenient domain for radiance

Four-dimensional basis functions are required to represent radiance
distributions: two variables describe spatial variation across a sur-
face, and two variables describe angular variation. As is common,
we split the surfaces into patches such that the spatial variables on

unit hemisphere

gnomonic
projection-

disc with radius�=2

radial
“stretch”-

unit square
- u3

�
��

u4

Figure 4 Angular projection: gnomonic projection and radial “stretch.”

u3
u4

Figure 5 A radiance distribution before and after angular projection.

each patch can be parameterized on the unit square [0, 1]2 as illus-
trated in Figure 3. The domain of the radiance distribution on each
path is then [0, 1]2 � H2, where H2 is the unit hemisphere.

Next, for convenience, we transform the hemisphere of directions
into another unit square, which allows us to use tensor products
of one-dimensional basis functions for both angular and spatial
variations.1 To achieve this transformation, we first use gnomonic
projection to map between points in H2 and points on a disc with
radius �=2. As shown on the left side of Figure 4, gnomonic pro-
jection maps great circles through the pole ofH2 to radial lines, and
preserves arc length along these curves. We use this map because it
is easily computed and it introduces less distortion than “flat” pro-
jection (flat projection maps H2 to a unit disc by simply ignoring the
height component, resulting in points near the equator being mapped
very densely near the circumference of the circle). We then follow
the gnomonic projection by a radial “stretch” of the disc to exactly
cover the unit square, as shown on the right side of Figure 4. Note
that the composition of the gnomonic projection and radial stretch
is an invertible mapping between H2 and the unit square. However,
the radial stretch introduces a derivative discontinuity along the di-
agonals of the square. Figure 5 shows a typical radiance distribution
(resulting from glossy reflection of light from a single point) before
and after this transformation. After the projection, the distribution
is still continuous, but has a first-derivative discontinuity along the
diagonals of the unit square.

3.4 A four-dimensional wavelet basis

We now need to construct basis functions on the four-dimensional
hypercube [0, 1]4. There are two commonly-used methods, which
both employ tensor products of univariate basis functions: the so-
called “standard” and “non-standard” constructions [4]. The stan-
dard construction forms a basis from all possible tensor products of
univariate basis functions. In the non-standard construction, on the
other hand, each tensor product consists of univariate basis func-
tions in the same space j (which restrics the supports of multi-
variate basis functions to be square in the Haar basis). The stan-
dard and non-standard basis constructions are illustrated in Figure 6
for the case of two-dimensional basis functions. We choose the
non-standard basis construction primarily because the required data

1Alternatively, we could construct wavelets directly on the hemisphere,
in a manner similar to that used by Schröder and Sweldens [31] for spheri-
cal wavelets, but the use of different basis functions for spatial and angular
variables would significantly complicate our implementation.
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Figure 6 The standard (left) and non-standard (right) constructions of a two-dimensional Haar wavelet basis forV2. In an unnormalized basis,
functions are +1 where plus signs appear,�1 where minus signs appear, and 0 in gray regions.

structures are simpler (see Section 6.4).

Let u = (u1, u2, u3, u4) denote a point in [0, 1]4, and let i =
(i1, i2, i3, i4) denote a four-component multi-index of integers. The
four-dimensional scaling functions for Vj take the form

����j
i(u) � �j

i1
(u1)�j

i2
(u2)�j

i3
(u3)�j

i4
(u4) .

That is, the scaling functions for resolution j consist of all possible
products of the one-dimensional scaling functions for resolution j.
The four-dimensional wavelets spanning the orthogonal comple-
ment Wj are formed by taking all other products of scaling functions
and wavelets for resolution j. These wavelets consist of 15 types:

��� j
i(u), �� �j

i(u), ��  j
i(u), : : : ,     j

i(u) .

We take as our basis B the set of basis functions spanning
V0, W0, W1, : : : for each patch in the scene.

The duals to each of the scaling functions and wavelets follow from
the univariate duals since duals of products are products of duals.

For example, ��  
j
i(u) = �

j
i1

(u1)�
j
i2

(u2) 
j
i3

(u3) 
j
i4

(u4).

3.5 Transport matrix decomposition

Just as there are two different tensor-product constructions for mul-
tidimensional bases, so are there two ways to decompose a matrix:
the so-called “standard” and “non-standard” decompositions [4].
Gortler et al. [18] and Schröder and Hanrahan [30] use the non-
standard decomposition of the transport matrix, in which each ba-
sis function interacts with other basis functions at just a single level
of the hierarchy. Each iteration of an algorithm using the non-
standard decomposition is followed by “pushing” and “pulling” op-
erations [18]. By contrast, we use the standard decomposition of
the transport matrix, in which a basis function may interact with
other basis functions at many different levels of the hierarchy. The
“pushing” and “pulling” procedures are unnecessary in our algo-
rithm. (However, we do have to update the results of numerical in-
tegration as described in Section 5.4.)

Note that for a smooth operator, theory predicts that a non-standard
operator decomposition will have O(n) nonzero entries, while a
standard operator decomposition will haveO(n log n), where n is the
number of basis functions [4]. Our experiments with flatland radi-

ance show that for a given error tolerance, the standard decomposi-
tion can approximate some transport matrices using as few or fewer
interactions than the non-standard decomposition [6]. Thus, in prac-
tice the non-standard decomposition is often no more sparse then
the standard decomposition. Similar conclusions were reached by
Schröder et al. [29] for radiosity, and by Jaffard and Laurençot [22]
for more general operators.

4 Importance for glossy scenes

In order to maintain a tractably small problem for complex scenes,
we use importance-driven refinement to compute a view-dependent
solution. In this section, we describe a type of importance that satis-
fies the same equilibrium equation as radiance. Section 5 discusses
how radiance and importance can be used together to compute a so-
lution.

Smits et al. [37] showed that diffuse importance gives a substantial
speed-up for a complex diffuse scene. For glossy reflections, the po-
tential gain is even greater, due to the directionality of radiance and
importance: a directional interaction must be refined only if the radi-
ance in that direction is sufficiently large, inaccurate, and important.

4.1 Incident and exitant directional importance

Smits et al. [37] define the “importance” at a point to be the fraction
of light leaving that point that reaches the eye. Here we show that
a slightly different definition is advantageous for the finite element
solution of glossy global illumination, since it allows importance to
be represented in the same manner as radiance, and makes impor-
tance satisfy the same transport equation as light.

The form of diffuse importance defined by Smitset al.for radiosity is
an incident quantity similar to irradiance. The most direct general-
ization of this quantity to radiance is an incident type of directional
importance. Incident directional importance can be defined as the
fraction of radiance that reaches the eye. This type of importance
was used by Pattanaik and Mudur [25] for a Monte Carlo solution
method and Aupperle et al. [2] for a finite element solution method.
Incident directional importance is represented and transported like
differential irradiance. By contrast, using an exitant formulation for
importance allows radiance and importance to be transported iden-
tically, as we show in the next section.
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4.2 Importance transport

Christensen et al. [8] showed that importance can be considered an
exitant quantity like radiance and can be transported like light, thus
simplifying a finite element representation. That presentation was
based on adjoints. Here we give a simpler and more intuitive (but
equivalent) explanation. With foresight, we define importance as
follows:

Definition: Importance �(y,!yx) is the fraction of G(x, y) L(x,!xy)
that reaches the eye.

Light contributes directly to the image if it reaches the eye from one
of the directions in the viewing pyramid. We can weight the light by
a distribution of emitted importance �e at the eye:

Definition:

�e(y,!) �

�
1, for y on eye patch and ! in viewing pyramid
0, elsewhere.

In order to show that importance as defined above satisfies the same
transport equation as radiance, we will need the following lemma.

Lemma: (T n
�e)(y,!yx) is the fraction of G(x, y) L(x,!xy) that

reaches the eye through exactly n bounces.

Proof: We use induction over the number of bounces taken by the
radiance before it reaches the eye.

Basis: �e(y,!yx) is the fraction of G(x, y) L(x,!xy) that reaches the
eye directly; the fraction is zero if y is not on the eye patch or!yx is
not within the viewing pyramid.

Inductive step: By the inductive hypothesis, (T n�1
�e)(z,!zy) is the

fraction of the quantity G(y, z) L(y,!yz) that reaches the eye through
exactly n�1 bounces. A single bounce of radianceL(x,!xy) results
in a radiance distribution fr(!xy, y, �) G(x, y) L(x,!xy) at y; see the il-
lustration in Figure 7(a).

The amount of L(x,!xy) that reaches the eye through exactly
n bounces is the integral over all possible paths involving (n� 1) +
1 bounces:Z

z

h
(T n�1

�e)(z,!zy)
i

G(y, z)
h

fr(!xy, y,!yz) G(x, y) L(x,!xy)
i

dz

=

�Z
z

(T n�1
�e)(z,!zy) G(y, z) fr(!xy, y,!yz) dz

�
G(x, y) L(x,!xy)

=

�Z
z

fr(!zy, y,!yx) G(z, y) (T n�1
�e)(z,!zy) dz

�
G(x, y) L(x,!xy)

= (T T n�1
�e)(y,!yx) G(x, y) L(x,!xy)

= (T n
�e)(y,!yx) G(x, y) L(x,!xy)

Arriving at the last expression, illustrated in Figure 7(b), proves the
lemma. 2

Corollary: The sum
P1

i=0 T
i
�e satisfies our definition of impor-

tance �.

Theorem: Importance� satisfies an equilibrium equation with the
same transport operator as radiance, namely

� = �e + T � .

Proof: Assuming that reflections are energy dissipating, the norm
of T is less than one and thereforeI �T is invertible (here I is the
identity operator). The importance can then be rewritten using the
Neumann series as � =

P1
i=0 T

i
�e = (I � T )�1

�e. Operating on

y
fr(!xy, y, �) G(x, y) L(x, !xy)

x
L(x, !xy)z

z

z

T n�1
�e

(a)

y

(T n
�e)(y,!yx)

x
L(x,!xy)

(b)

Figure 7 Two ways of computing the amount of radianceL(x,!xy)
that reaches the eye through exactlyn bounces: the integral over all
points z in (a) is equivalent to the simple product in (b).

both sides with I � T gives (I � T )� = �e; the theorem follows
directly. 2

Since exitant directional importance satisfies the same transport
equation as radiance, it can be discretized like radiance and trans-
ported using the same transport coefficients. The discrete impor-
tance transport equation is

� = �e + T� .

The only difference from radiance is that while radiance is emitted
by light sources, importance is emitted by the eye.

5 Algorithm

Our solution method for radiance transport makes use of a wavelet
representation and importance-driven refinement. The algorithm
computes a view-dependent solution to the radiance equation; that
is, the solution is refined most in the areas that contribute most to the
image. In some respects, our algorithm is similar to the approach de-
scribed by Gortler et al. [18] for wavelet radiosity. However, there
are a number of areas aside from the higher dimensionality of radi-
ance in which our algorithm differs significantly from this previous
work.

In this section, we first present the main algorithm and then dis-
cuss transport coefficients: how they are computed, which ones are
computed as refinement proceeds, and how their accuracy can be in-
creased adaptively at little cost. Last, we describe our use of a final
gathering step to generate smooth solutions with accurate shadows
and textures.

5.1 Main algorithm

The primary task is to solve two systems of linear equations, one for
radiance and one for importance:

L = Le + TL and � = �e + T� .

We first compute a small number of entries of the matrixT and solve
the equations, then compute more entries of T and solve again, and
so on. The high dimensionality of the global illumination problem
makes the entries of T very expensive to compute, so we strive to
compute as few of these entries as possible while generating a good

6



approximation to the solution. Put briefly, only entries ofT that are
estimated to be large—and that connect large and important basis
function coefficients—are computed.

The main part of the algorithm alternates between computing ap-
proximate radiance and importance solutions L̃ and �̃ and improv-
ing the finite representation of the transport operator T̃. Quantities
with a tilde are approximate, both because they are computed nu-
merically and because they are truncated versions of infinite matri-
ces. Initially, we project Le and �e into space V0, the space spanned
by the coarsest-level scaling functions, to give L̃e and �̃e. We also
compute the entries of T corresponding to interactions of scaling
functions in V0 with one another (as described in Section 5.2), giv-
ing T̃. The algorithm is given in pseudocode below:

procedure GlossyGlobalIllumination(T̃, L̃e, �̃e)
L̃  L̃e

�̃  �̃e
repeat

L̃  Solve (T̃, L̃, L̃e)
�̃  Solve(T̃, �̃, �̃e)
T̃  Refine(T̃, L̃, �̃)

until visual convergence of L̃
end procedure

The radiance and importance systems are solved simultaneously,
with the solution in one system determining the refinements in the
other system. Importance is used to refine the radiance solution only
in areas that are significant to the final image. Likewise, radiance
is used to refine the importance solution only in bright parts of the
scene. The main loop iterates until visual convergence is achieved,
that is, until further refinement does not significantly change the
computed image. We use Gauss-Seidel iteration [16] to solve the
approximate transport equations L̃ = L̃e + T̃L̃ and �̃ = �̃e + T̃�̃.
Refinement is determined by an “oracle,” described in Section 5.3.

5.2 Computing transport coefficients

The algorithm above requires computation of transport coeffi-
cients between basis functions. Each transport coefficient is de-
fined in Equation (4) as a six-dimensional integral, which we ap-
proximate using numerical integration. Four-dimensional numer-
ical integration formulas for wavelet radiosity are discussed by
Gortler et al. [18].

The transport coefficients Tr s are computed as inner products.
For example, the influence of wavelet  � �j

i(us) on wavelet

 ���j0

i0 (ur) is Tr s = h ���
j0

i0 j T  � �
j
ii. While radiance varies

with position x and direction !, the domain of our tensor-product
basis functions is the four-dimensional hypercube [0, 1]4. For con-
venience, we will make the spatial and angular transformations im-
plicit, and write the basis functions as functions of points and di-
rections: let the sending position x correspond to the two param-
eters u1 and u2, and let the direction !xy correspond to parameters
u3 and u4 (and similarly for the parameters y and ! of the receiv-
ing basis function). Then the inner product in our example takes the
form

Tr s = h ���
j0

i0 j T  � �
j
ii

=

Z
!y

 ���
j0

i0 (y,!)

Z
x

fr(!xy, y,!) G(x, y) � �j
i(x,!xy) dx dy d!

=

Z
xy

�Z
!

 ���
j0

i0 (y,!) fr(!xy, y,!) d!

�
G(x, y) � �j

i(x, !xy) dy dx .

(5)

Note that only the BRDF and the receiving basis function depend
on !. Our numerical integration routine evaluates these two func-
tions in its innermost loop, while the remaining functions are eval-
uated only as the positional variables change.

We approximate integrals such as the one in Equation (5) using
slightly jittered uniform sampling of the integrand. One area for
future research in glossy global illumination is the exploration of
more accurate integration rules such as Gauss-Legendre or Gauss-
Kronrod quadrature [18, 27, 43].

5.3 Refinement

In the algorithm, the approximate transport matrix T̃ is progres-
sively refined. Here we describe how entries of T̃ are selected for
computation.

In many applications of wavelets in numerical analysis [4], the goal
is to obtain a sparse representation of a given matrix, thereby making
repeated matrix–vector multiplications much faster. In such appli-
cations, the wavelet decomposition of the matrix is done once and
for all as a preprocess, so the cost of computing all the matrix ele-
ments is amortized by many fast matrix multiplications. In wavelet-
based approaches to global illumination, on the other hand, the cost
of explicitly constructing an entire transport matrix far outweighs
the expense of any matrix–vector multiplications that follow. There-
fore, it is essential to restrict the number of computed transport co-
efficients.

The goal of the refinement oracle is to determine which of the entries
of T missing from T̃ should be computed to reduce the visible error
in the current radiance solution. The two most important sources of
error are:

� truncation error due to significant entries missing from T̃, and

� integration error in computing the entries of T̃.

In this section we describe how our oracle reduces truncation error.
Section 5.4 outlines a method for simultaneously reducing integra-
tion errors.

The refinement oracle uses concepts from the brightness refine-
ment criterion for hierarchical radiosity [19], the oracle used by
Gortler et al. for wavelet radiosity [18], and the importance-based
refinement strategy used by Smits et al. [37]. The idea is to esti-
mate the influence on the visible image that would result if a new
transport coefficient were to be included in T̃. If this quantity falls
below some threshold, the expensive computation of the transport
coefficient can be avoided without resulting in significant error in
the solution.

Consider two basis functions bs and br with no transport coefficient
between them yet, as depicted in Figure 8. We compute a new trans-
port coefficient T̃r s if a sufficiently large value results from the
product of

1. radiance: the magnitude of the sending basis function coeffi-
cient ˜̀s;

2. estimated transport coefficient: the estimated new transport co-
efficient T̃r s between the basis functions; and

3. importance: the integral of G�̃ over all patches whose impor-
tance reaches the receiving basis function.

The product of the first two quantities estimates the amount of light
transported between the two basis functions. Multiplying by the im-
portance shining onto the receiving basis function gives the contri-
bution of the transported light to the final image. The sending basis
function coefficient is known from the interim solution. The integral
of importance arriving at the receiving basis function can be com-
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bs

br

�̃

Figure 8 Sending and receiving basis functions

puted from the interim solution as well. Our estimate of the trans-
port coefficient uses kernel variation, as we will explain shortly.

There are infinitely many new transport coefficients to be consid-
ered for computation. We need a scheme for considering only some
of them in each iteration, while making it possible to eventually
consider all. To do this, we will associate with each wavelet  a
unique “parent” wavelet  0 that overlaps  and is in a space one
level coarser. We will define the parent of a wavelet in W0 to be
the scaling function in V0 sharing the same support. (For example,
in the simple case of the one-dimensional Haar wavelet basis, the
parent of  j

i is  j�1
bi=2c, and the parent of  0

0 is �0
0.) In our imple-

mentation, we then consider computing a new transport coefficient
T̃r s only if there is already a transport coefficient T̃r s0 or T̃r0 s,
where r0 is the parent of r and s0 is the parent of s.

As an estimate for the transport coefficient T̃r s under considera-
tion, we use the variation (maximum minus minimum) of the sam-
ples of the kernel that were obtained when computing either T̃r s0

or T̃r0 s. This variation estimates the kernel’s deviation from a con-
stant function; the oracle described by Gortleret al. [18] used a sim-
ilar measure of deviation from an interpolating polynomial. (One
might improve the estimate of T̃r s by using a global visibility al-
gorithm [40] instead of computing an approximate visibility using
sampling, although we have not explored this possibility ourselves.)

Since the kernel variation is the same for all fifteen transport coeffi-
cients from a given basis function to the fifteen wavelets sharing the
same support, and since the radiance and importance reaching these
basis functions are also the same, their estimated contribution to the
image will be identical. We therefore compute all fifteen transport
coefficients at once. This approach allows us to avoid re-evaluating
the kernel for each of these transport coefficients. (At the same time,
we also compute the transport coefficient between the two scaling
functions that share support with the sending and receiving basis
functions. This transport coefficient is not used for light transports,
but for adaptive improvements of other transport coefficients, as de-
scribed in Section 5.4.)

For each call to the refinement procedure, the maximum product
of radiance, kernel variation, and importance for all potential new
transport coefficients is computed. Then all new transport coeffi-
cients with a product larger than some fraction (for example, 10%
in our implementation) of the maximum product are calculated and
incorporated into T̃. This method requires two passes through all
potential new transport coefficients, but it allows refinement to pro-
ceed automatically without any user-specified tolerances.

5.4 Adaptive numerical integration

If we always use a numerical integration rule of high accuracy to
compute transport coefficients, time is wasted evaluating the kernel
for many interactions that have little effect on the final image. On
the other hand, the significant transport coefficients must be com-
puted to high precision; otherwise, the solution will not converge to

the correct value. It is therefore necessary to use an adaptive numer-
ical integration technique that reduces error in transport coefficients,
particularly those transport coefficients that are refined by the ora-
cle. We have implemented such an adaptive integration as part of
the refinement procedure.

At the time a transport coefficient is computed, a numerical integra-
tion method is used as described in Section 5.2. Later, if we com-
pute transport coefficients that link narrower wavelets sharing sup-
ports with the original basis functions, the kernel is sampled more
densely. These samples are re-used to compute the coarse transport
coefficient more accurately.

As we mentioned in the previous section, the transport coefficient
between two scaling functions is computed at the same time as the
transport coefficients between other basis functions with the same
support (at practically no extra cost, since the necessary samples of
the kernel have already been obtained). Since wavelets in a cer-
tain space can be expressed as a linear combination of scaling func-
tions in higher spaces, coarse-level transport coefficients between
wavelets can be recomputed by taking linear combinations of the
transport coefficients between finer-level scaling functions. In this
way, transport coefficients are adaptively recomputed wherever the
kernel is sampled densely.

5.5 Final gather

In order to render the solution, we can either evaluate the finite el-
ement representation of the solution directly, or we can perform an
extra step that improves its visual quality. Following the ideas that
Reichert [28], Lischinski et al. [23], and Smits [36] used for radios-
ity, we have implemented a final radiance gathering step. For each
pixel in the final image, we perform a final gathering of light to the
surface point y that corresponds to the midpoint of the pixel.

We have tried three different final gathering methods. A complete
final gather method gathers light from all basis functions in the so-
lution. A faster final gather method gathers light from each of the
basis functions that has a transport coefficient linking it to a basis
function with support at the point y and in the direction of the eye e.
This faster method only excludes light transports that were not con-
sidered to be significant in the solution process. The third alternative
achieves still greater speed by gathering light only from each basis
function that has a transport coefficient linking it to the single scal-
ing function on the patch that point y is on. We have tried all three
methods and found that the fastest final gather method causes no vis-
ible degradation in the final image; exploring the tradeoffs between
the speed and accuracy of these (and other) final gather approaches
remains an open area for research.

For each basis function from which we want to do a final gather, we
evaluate a simplified version of the integral in Equation (5). For ex-
ample, the final gather from the wavelet � �j

i(x,!) requires eval-
uating

Z
x

fr(!xy, y,!ye) G(x, y) � �j
i(x,!xy) dx .

Since the receiving position y is fixed and the radiance is reflected
towards the eye e, the integration is only over sending positions x.

Formally, this final gather corresponds to changing to a piecewise-
constant basis, where the support of each basis function is the pro-
jection of a pixel onto a surface in the scene. Intuitively, this ba-
sis is tailored to be visually pleasing. The final gather smooths the
discontinuities in the wavelet representation, and makes highlights,
textures, and shadows crisper. The improvement brought about by
the final gather can be seen by comparing Figures 16(e) and (f).
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Another way of thinking about the final gathering step is in the con-
text of distribution ray tracing [13]. When a ray cast from the eye
intersects a surface in the scene, a group of reflected rays are traced
from the intersection point to points on other surfaces in the scene.
A constant number of rays are cast to the support of each selected
basis function in the radiance solution. In this way, the directions
of the rays are guided by the solution. Thus, the most refined areas
of the radiance solution are sampled the most by the distribution of
reflected rays. Note that we avoid the costly “explosion” in the num-
ber of rays associated with the recursive bounces used in distribution
ray tracing, since we only follow a single bounce. Also, once a fi-
nite element radiance solution has been computed, the final gather
requires no additional memory.

6 Implementation

In this section, we describe specific features of our implementation,
as well as the data structures used to represent basis-function and
transport coefficients.

6.1 Surface geometry

Curved objects are more compactly represented by splines than
quadrilaterals. Our algorithm naturally applies to spline surfaces, as
long as they are split into convex patches, so that no patch can in-
teract with itself. With this restriction, we can use any surface rep-
resentation for which it is possible to determine the intersection of a
ray with a surface and compute a position, surface normal, and dif-
ferential area associated with a given parametric point (u1, u2). Our
implementation includes Bézier surfaces and quadrilaterals.

6.2 Reflection models and texture maps

We use the Ward isotropic and anisotropic reflection models [42]
since they are inexpensive to evaluate and consistent with physi-
cal observations. Ward’s models account for angular variations in
reflectance; we also allow reflectance to vary spatially to simulate
the texture of materials. Figure 16 demonstrates both texture (on
the floor, walls, and pedestal) and an anisotropic reflectance func-
tion (on the teapot).

In the course of numerically approximating a transport coefficient,
the geometric term and the BRDF are sampled at a number of
quadrature points. The reflectance for each quadrature point is de-
termined by a look-up in a texture map, multiplied by the angular
variation given by Ward’s model. Multiresolution textures could
be incorporated in our method by using a pyramid of texture av-
erages instead of sampling. This approach would reduce the errors
caused by point-sampling the texture. Gershbeinet al. [15] present a
more rigorous mathematical approach for using textures in radiosity,
which employs wavelet decompositions of the textures themselves.

6.3 Light sources

By storing the wavelet decomposition of an image as the initial coef-
ficients on a patch, we can model a light source that emits a spatially-
varying radiance (such as a television screen). In general, not all co-
efficients of the emitting image will interact with other parts of the
scene; instead, the refinement procedure determines which coeffi-
cients affect the visible solution. This technique allows a complex
environment to be displayed using simple geometry.

A simple approach to angular variation is to make emission an ex-
plicit function of direction. For example, we model “spotlights”
using a Phong-like function, in which emission depends on some
power of the cosine of the angle between the emission direction and

`j
i1,i2

`j+1
2i1,2i2

`j+1
2i1+1,2i2

`j+1
2i1,2i2+1 `j+1

2i1+1,2i2+1

Figure 9 Tree of basis function coefficients on a patch (simplified to
two dimensions, where each node has only 4 children).

the surface normal of the patch. The spotlights appear dark from
most directions because of the very narrow distribution of light they
emit.

We demonstrate the use of spotlights and a spatially-varying emitter
(the outdoor environment seen through the window) in Figure 16.
More complex effects such as a slide projector or sunlight through
a stained-glass window could be modeled by combining spatial and
angular variations in an emitter.

6.4 Data structure for basis function coefficients

As in previous hierarchical radiosity algorithms [12], the matrices
T̃, L̃, L̃e, �̃, and �̃e are never formed explicitly. In our implemen-
tation, entries of L̃, L̃e, �̃, and �̃e are associated with the surface
patches, while entries of T̃ are stored as “links” between radiance
(and importance) coefficients. The coefficients and links are allo-
cated dynamically as the solution is refined.

A hierarchy of basis function coefficients is associated with each
patch. We have implemented the hierarchy as a tree in which each
node contains all coefficients ` with the same indices (space j and
translation i1, : : : , i4). Initially, each patch has a single root node as-
sociated with it, containing a scaling function coefficient in spaceV0

for each of six “color bands”: red, green, and blue radiance and red,
green, and blue importance. Only root nodes store these scaling
function coefficients, but all nodes contain storage for 15 wavelet
coefficients for each color band, and 16 pointers to child nodes that
contain the coefficients in the next (more refined) space. The point-
ers between nodes are illustrated in Figure 9.

6.5 Data structure for transport coefficients

The transport coefficients that describe the interaction between radi-
ance (or importance) basis functions on different patches are stored
in links. As described in Section 5.3, the transport coefficients from
a sending basis function to all 15 wavelets and the single scaling
function sharing support are computed at the same time. In our im-
plementation, all 16 of these transport coefficients are stored on the
same link. (Alternatively, each transport coefficient could be stored
in its own link, but the extra storage overhead would make this ap-
proach infeasible as scenes became complex. As another alterna-
tive, the transport coefficients between all 152 possible combina-
tions of wavelets on sender and receiver could be stored in a single
link. However, this method would also waste memory by creating
links with room for many transport coefficients that might never be
computed if, for example, a sending coefficient was too small.)

Thus, each link contains a pointer to the node from which it is trans-
porting radiance (or importance); information about what type of
basis function it is transporting from; 15 entries of T̃ for each of
the three color bands; the sample variation encountered while com-
puting those transport coefficients (used for refinement as described
in Section 5.3); a scaling-function-to-scaling-function transport co-
efficient for each of the three color bands (used for adaptive im-
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Figure 10 Example of links between basis functions (in two dimensions).

existing link

possible
new links

existing link

possible
new links

Figure 11 New links to be considered (in two dimensions).

provement of transport coefficients as described in Section 5.4); and
a pointer to the next link with the same receiving basis functions.
Note that there can be several links between the same pair of nodes,
each connecting different sending basis functions with the same sup-
port, as illustrated in Figure 10. All links pointing to a given node
are organized in a dynamic list. Initially, links are set up between
root nodes for all pairs of patches that are mutually visible.

We consider creating new links between basis functions bs and br

only if there is already a link from bs to the parent of br, or from
the parent of bs to br; see Figure 11. This restriction reduces the
number of new links that have to be considered for refinement at one
time, while still allowing all possible links to be created eventually.
The existing link contains information about the kernel variation en-
countered while computing its transport coefficients; this variation
is used as an estimate of the (yet uncomputed) transport coefficient
to or from a child basis function. The one exception to this scheme
is root nodes, since they have no parent. Here the link between the
two scaling functions is used for information about kernel variation
for the wavelets in W0. Note that because a new link can be created
in two different ways (by refining a link at the sending end or by re-
fining a different link at the receiving end), we need to check for a
link’s existence to avoid creating a duplicate.

Links are never destroyed in our algorithm. By contrast, the ap-
proach described by Gortler et al. [18] removes a link at one level
of the hierarchy and replaces it with multiple links at a finer level
of detail (because they use a scaling function representation at all
levels of detail).

The adaptive numerical integration described in Section 5.4 takes
place after new links have been set up, as a bottom-up traversal of
all links. During this traversal, we compute a new transport coeffi-
cient for a given link by taking a linear combination of the scaling-
function-to-scaling-function transport coefficients on all links be-
tween child nodes. The particular linear combination that is used
depends on the sending and receiving basis functions involved.

7 Results

Here we present results from tests of our algorithm on two scenes,
one very simple and one more complex. For the simple scene, a
reference solution is easyily obtained, so convergence and conver-
gence rates can be tested. For the more complex scene, computing
a reference solution is infeasible. However, we have included the
scene to provide an example that is non-trivial.

7.1 Convergence tests

To test convergence and convergence rates, we used a simple scene
consisting of two tiny patches and a large patch. The geometry
is shown in Figure 12. Patch 1 is emitting radiance Le, and this
light is reflected by patch 2 according to Ward’s glossy reflection
model [42] with � = 0. 2. This glossy reflection results in a direc-

1

2

3

1 2
3

Figure 12 Simple scene geometry seen from the side and from above.

tional radiance distribution on patch 2. The light from patch 2 is re-
ceived at patch 3, which is a diffuse reflector.

The angular variation of the radiance distribution on patch 2 is
shown in the rightmost image in Figure 13 after being transformed
from the hemisphere of directions to the unit square as described in
Section 3.3. This “reference solution” was computed as

L2(y,!) = fr(!xy, y,!) G(x, y) Le(x,!xy) A1 ,

where x is the midpoint of patch 1, y is the midpoint of patch 2,
and A1 is the area of patch 1, for directions ! on the hemisphere.
Converging finite element approximations of this angular variation
are shown in Figure 13, along with difference images illustrating
the error in the approximations relative to the reference image. The
graph in Figure 14(a) quantifies the convergence of the distribution
of radiance on patch 2.

The spatial variation of the radiance on patch 3, the large diffuse re-
ceiver, is shown in the rightmost image of Figure 15. This reference
solution was computed as

L3(z,!) = fr(!yz, z,!) G(y, z) L2(y,!yz) A2 ,

for points z on patch 3, where A2 is the area of patch 2. Here the di-
rection ! is unimportant since patch 3 is a purely diffuse reflector.
The top row of images shows the convergence of the wavelet rep-
resentation. The first four images are identical, because all refine-
ments take place between patches 1 and 2 (since larger radiance is
involved in that transport, and importance is not taken into account).
From the fifth image on, the interactions to patch 3 are also refined.
Difference images are shown directly below each wavelet solution.

The third and fourth rows of Figure 15 show converging solutions
and the corresponding difference images when the receiving patch
emits importance. In this case, the interactions are refined more at
the receiver than in the preceeding test.

The fifth and sixth rows of Figure 15 show the solution with a final
gathering step, but without importance. Here the rendering takes ad-
vantage of the refinements of the interactions to patch 2 even before
the interactions to patch 3 are refined. Note that the final gather re-
sults in images that are still piecewise constant because there is only
one radiance distribution visible to patch 3, namely the piecewise-
constant distribution of patch 2. The graph in Figure 14(b) illus-
trates the convergence of the radiance distribution on patch 3, with
and without importance, and also with the final gathering step.

As these results show, a final gather improves the appearance of the
solution, and gives a better image in the same amount of CPU time.
However, the final gather is useful only for display, since the result is
an image, but not a set of basis functions that could be used for fur-
ther refinement and solution. Future research could examine how
far the solution would have to proceed before the final gather is per-
formed, if a given accuracy in the solution is required.

7.2 A more complex scene

As a more complex test scene, we used a maze of hallways with a
glossy Bézier-patch teapot in the center (see Figure 16). The scene
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Figure 13 (a) Refinement of the radiance distribution on patch 2, displayed as a function of angular parameters for a fixed position. The rightmost
image is the reference solution. (b) The difference between each image and the reference image (blue and red indicate positive and negative
values, respectively).
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Figure 14 (a) Convergence of the radiance distribution on patch 2.
(b) Convergence of the radiance distribution on patch 3: The top
curve is the solution without importance, the middle curve is the so-
lution with importance, and the bottom curve is the solution with fi-
nal gather (without importance). The CPU times were measured on
a DEC 3000/400 “Alpha” computer.

consists of 152 patches, including 28 Bézier patches, and has 12,603
mutually visible pairs of patches. The teapot’s reflectance function
uses Ward’s reflection model [42], and is anisotropic with speculari-
ties�u = 0. 2 and�v = 0. 5, specular reflectivity�s = (0. 1, 0. 1, 0. 1)
and diffuse reflectivity �d = (0. 2, 0. 15, 0). The illumination con-
sists of 24 “spotlights,” patches that emit directional radiance. There
is a patch outside the window that emits light according to a scanned
image of an outdoor scene, giving the appearance of a full environ-
ment beyond the window. The radiance emitted by the lights and
reflected in the scene is shown in Figure 16(a). The objective is to
generate an image of this environment as seen from the eye, a small
patch in the hallway in front of the teapot. All back faces, where no
radiance is computed, are rendered as gray.

Importance is emitted from the eye (just as a spotlight emits light)
and reflected to the important parts of the scene, as shown in Fig-
ure 16(b). This figure demonstrates the small fraction of the overall
model that significantly influences the visible scene. Figure 16(c)
is a gray-scale encoding of the number of links between the basis
functions on each surface patch. This “refinement image” verifies
that most work is performed in areas that are bright and important.
Note that we could get arbitrarily large speed-ups, compared to a so-
lution obtained without using importance, by choosing a sufficiently
complex scene in which many parts do not contribute significantly
to the final image.

The program begins by creating 12,603 links between scaling func-
tions, and then solves for the equilibrium distribution. This ini-
tial solution can be seen in Figure 16(d). After six iterations of
refinement and solution, there are 126 scaling functions in V0,
1,518 wavelets in W0, 18,852 wavelets in W1, 160,248 wavelets
in W2, 165,495 wavelets in W3, and approximately 1.73 million

links. This solution can be seen in Figure 16(e). In some refine-
ments, new links are created only within existing spaces, so the so-
lution space remains in V4 after six iterations. Running times on a
DEC 3000/400 “Alpha” machine were approximately 5 minutes to
compute the initial solution, then 100 minutes to iterate the main al-
gorithm and refine as far as V4 in important parts of the scene. Once
we obtain this solution, we need to create an image of it, either by
evaluating the solution directly or by using a final gather step. Al-
though it might be possible to take advantage of graphics hardware
to render the solution directly, we use a ray-casting technique in or-
der to preserve the quality of curved surfaces and correctly account
for the directionality of radiance. The 600� 600 image shown in
Figure 16(e) was rendered in 15 minutes. The other alternative is
to use a final gathering step for the rendering, which takes approx-
imately two hours, making it comparable to the solution process it-
self. The result is shown in Figure 16(f). Note the significant color
bleeding from the brick walls to the dim ceiling, as well as the glossy
highlights on the teapot.

8 Conclusion

We have presented an efficient method for simulating light trans-
port in an environment with diffuse and glossy reflections. The effi-
ciency comes from using a wavelet representation of radiance along
with importance-driven refinement for a view-dependent solution.

We use a finite element representation of the four-dimensional radi-
ance distributions associated with surfaces in a scene, since this rep-
resentation has a lower initial cost than a representation using two-
point transport intensities. For the finite elements, we used the Haar
basis, the simplest wavelet basis. Wavelets adapt to the solution, so
in areas with little spatial or angular variation a coarse solution is
computed, and in areas with greater detail a more refined solution is
found.

In contrast to previous algorithms for wavelet radiosity, we use a
standard decomposition of the operator, and since we use a wavelet
representation rather than scaling functions at all levels, our algo-
rithm does not require “pushing” and “pulling” procedures. How-
ever, our algorithm requires that we update numerical integrations,
and we described an adaptive integration method that re-uses kernel
samples to improve existing transport coefficients.

We use importance to focus the computations where their impact on
the final image is highest. We showed that importance has an intu-
itive meaning, and can be considered an exitant quantity like radi-
ance.

Since light transport is formulated as a multidimensional Fredholm
integral equation of the second kind, our approach may benefit other
fields in which such equations arise—numerical analysis, finite el-
ement analysis, computational heat transfer, and particle transport
simulation, for example.

11



(a)

(b)

reference

(c)

(d)

reference

(e)

(f)

reference

Figure 15 (a) Refinement of the radiance distribution on patch 3. (b) The difference between each image and the reference image. (c) Solutions
when patch 3 emits importance. (d) Difference images with importance. (e) Solutions with final gather (without importance). (f) Difference
images with final gather. The three rightmost images all show the reference solution for patch 3.

There are many possible extensions of the present algorithm. Sur-
faces that transmit light in addition to reflecting it could be incor-
porated into our algorithm by using wavelet basis functions defined
for the entire sphere of directions. Other wavelet bases, particularly
those with more vanishing moments, could be tried. Wavelet bases,
like all finite element bases, are not suited to the representation of
ideal specular reflections; instead, a ray tracing step for ideal spec-
ular reflection could be incorporated in the same fashion as in Sil-
lion et al. [34]. Finally, in a forthcoming article [7], we describe how
a clustering algorithm can be used to reduce the complexity of the
initial linking phase of the simulation by grouping together nearby
patches and representing each group’s radiance with a single distri-
bution. Such a method, combined with the work described in this
paper, can be used to compute glossy global illumination solutions
for extremely complex scenes.
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Figure 16 Solutions for a complex scene: (a) radiance seen from above; (b) importance seen from above; (c) gray-scale representation of
refinement; (d) initial radiance solution in spaceV0; (e) refined radiance solution in spaceV4; (f) refined radiance solution with final gather.
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