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1 Introduction

Radiosity algorithms assume that all re
ection is ideally di�use. This assumption,

while making the computation of global illumination more tractable, ignores many

important e�ects, such as mirror re
ection and glossy highlights. Though more

expensive, the simulation of directional distributions of lights, known as radiance

transport, is essential for realistic image synthesis.

To date, two general approaches have been used for radiance transport: Monte Carlo

and �nite-element methods.

The Monte Carlo approach, as pioneered by Cook et al. [1], Kajiya [4], and Ward

et al. [9], samples the directional distributions using \random walks," which in e�ect

simulate the transport of light by following paths of sample photons. Error is easy

to control: as more rays are traced, the variance of the solution is reduced. However,

Monte Carlo approaches, while easy to implement and control, are typically slow to

converge|and are particularly ill-suited to di�use re
ectors, which require a large

number of rays to sample adequately.

The �nite element approach, as pioneered by Immel et al. [3], Shao et al. [6], and

Sillion et al. [7], discretizes each surface into small elements and approximates the

radiance over each element by some function. This discretization can be thought

of as a \projection" of the original continuous (in�nite-dimensional) problem into

a �nite-dimensional domain. The radiance solution in this projected space is then

given by a linear system of equations. The approach is view-independent in the
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sense that the radiance solution, once computed, is equally valid for any eyepoint

and view direction.

For n elements, the �nite-element approach gives rise to a system of O(n) equations

with O(n) unknowns, which in general requires O(n2) storage and O(Kn2) time

to solve, where K � n is a constant that depends on the re
ectivity of surfaces

in the scene. Since for graphics applications n can be in the thousands or even

millions, these solution requirements can be prohibitive. Recently, Hanrahan et al.

[2] proposed a hierarchical algorithm for the simpler case of radiosity that goes a

long way toward resolving this di�culty. The hierarchical algorithm focuses e�ort on

the signi�cant energy transfers, quickly approximating the insigni�cant interactions.

An even larger speedup can be obtained by observing that a view-independent

solution is not always necessary; in many cases, we would be satis�ed with an

accurate solution for a particular view or set of views. To address this issue, Smits

et al. [8] described a radiosity algorithm that extends the hierarchical approach

to re�ne just those interactions contributing the most error to a view-dependent

solution. The algorithm makes use of importance functions, which are de�ned as

the solution to the adjoint radiosity transport equation. The \importance" of a

given patch essentially describes how radiosity originating at that patch in
uences

the visible surfaces. The algorithm combines estimates of importance and radiosity

to drive the global solution, allowing it to exploit view-dependent information as

part of an adaptive re�nement scheme.

In this paper, we show how the adjoint formulation for radiosity can be extended

to the more general setting of radiance transport, where the payo� from using

importance is even greater. This speedup is due to the savings in computation for

highlights that are present in the visible scene, but not directly visible to the eye.

Thus, in contrast to radiosity transport, applying importance to radiance transport

can give dramatic speedups even when all elements of the scene are visible. Seen

another way, \radiosity space" is two-dimensional (one radiosity for every surface

point), whereas \radiance space" is four-dimensional (one radiance for every surface

point and direction), so we might reasonably expect that limiting our error metric

to a small subset of this higher-dimensional space will yield a greater payo�.
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The contributions of this paper are several. We give a continuous adjoint formulation

of radiance transport, which extends the discrete adjoint formulations of radiosity

transport by Smits et al. [8] and of radiance transport by Pattanaik and Mudur [5].

We observe that the angular distributions of radiance are in general continuous func-

tions, whereas the angular distributions of its adjoint, \directional importance," are

in general discontinuous. This observation motivates the formulation of a related,

continuous type of directional importance, which we prove to be equivalent to ra-

diance in the sense that the two quantities satisfy the same transport equation.

This form of directional importance can be propagated through the environment in

exactly the same fashion as radiance. Finally, we present results from a preliminary

implementation that demonstrate the potential of using an adjoint formulation to

speed the computation of a view-dependent radiance transport solution.

2 Radiance

Let x, y, and z be points in space. We de�ne the radiance L(y ! z) as the power

emanating from y, per unit solid angle in the direction z � y, per unit projected

area perpendicular to z�y. Radiance L is measured in [watt�meter�2 �steradian�1].

The transport of radiance is described by the following equation:

L(y ! z) =
�

L (y ! z) +

Z
x

fr(x$ y $ z)G(x$ y) L(x! y) dx: (1)

In this equation,
�

L (y ! z) is the emitted radiance from y in direction z � y. It has

the same units as radiance [watt �meter�2 � steradian�1].

The term fr(x $ y $ z) is the bidirectional re
ectance-distribution function, or

BRDF, and describes the ratio of re
ected radiance in direction z � y to the di�er-

ential irradiance from direction y�x that produces it. As a consequence of Helmholtz

reciprocity, the BRDF satis�es fr(x $ y $ z) = fr(z $ y $ x); we therefore use

double-arrows ($) between its arguments. The BRDF has units [steradian�1].

Finally, the geometric term G(x$ y) is given by

G(x$ y) � V (x$ y) �
cos �x cos �y
jjx� yjj2

;
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where V (x $ y) is a visibility term that is 1 or 0, depending on whether or not x

and y are visible to one another, and �x and �y are the angles between line segment

xy and the respective normals to di�erential areas at x and y. The geometric term

describes how radiance leaving a di�erential area at x in direction y � x arrives as

di�erential irradiance at y. It has units [steradian �meter�2].

The radiance transport equation can be rewritten as L =
�

L + T L or

(I � T )L =
�

L; (2)

where I is the identity operator, and the transport operator T is de�ned as

(T L)(y ! z) �
Z
x

fr(x$ y $ z)G(x$ y) L(x! y) dx: (3)

3 Directional importance

Two operators O and O� are said to be adjoint if and only if for all A and B,

hOA ; Bi = hA ; O�Bi (4)

for some inner product h� ; �i.

Let �(x  y) be a new quantity, called directional importance, that is transported

by the adjoint equation of (2),

(I � T )�� =
�

�; (5)

where the adjoint is de�ned with respect to the inner product

hA ; Bi �

Z
xy

A(x! y)B(x y) dy dx:

Lemma The adjoint transport operator T � is

(T ��)(x y) = G(x$ y)

Z
z

fr(x$ y $ z) �(y  z) dz: (6)

Proof We need to verify that T and T � are adjoints in the sense of equation (4).

This follows from simple manipulation of integrals:

hT L ; �i =
Z
zy

(T L)(y ! z) �(y  z) dy dz
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=
Z
zy

Z
x

fr(x$ y $ z)G(x$ y) L(x! y) dx �(y  z) dy dz

=

Z
xy

L(x! y)G(x$ y)

Z
z

fr(x$ y $ z) �(y  z) dz dy dx

=

Z
xy

L(x! y) (T ��)(x y) dy dx

= hL ; T ��i

2

Theorem The adjoint equation for radiance transport (1) is

�(x y) =
�

�(x y) +G(x$ y)

Z
z

fr(x$ y $ z) �(y  z) dz: (7)

Proof The adjoint operator \�" is a linear operator, and the identity operator I

is self-adjoint, so (I � T )� = I � T �. The proof then follows immediately from the

previous lemma. 2

4 Relationship of radiance and directional importance

The transport equation for directional importance does not in itself impart any par-

ticular units on this new quantity �. In order to give meaningful units to directional

importance, we make the following observations.

We de�ne a new quantity, incoming radiance L (y  x), by the following identity:

L (y  x) � G(x$ y) L(x! y): (8)

Intuitively, L is the arriving radiance at y from the direction of x, per unit area at

x and y. Thus, incoming radiance L is measured in [watt �meter�4]; it describes

power (energy 
ux) per unit area of receiver per unit area of source.

We can also write an equation for (outgoing) radiance L(y ! z) as a function of

incoming radiance at y:

L(y ! z) =
�

L (y ! z) +

Z
x

fr(x$ y $ z) L (y  x) dx: (9)

This equation is easily checked by plugging in the de�nition from equation (8).
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Finally, multiplying through by G(z $ y), we can derive a transport equation for

incoming radiance L :

L (z  y) =
�

L (z  y) + G(z $ y)

Z
x

fr(x$ y $ z) L (y  x) dx; (10)

where

�

L (z  y) � G(y $ z)
�

L (y ! z):

Note that this equation is identical to Kajiya's \rendering equation" [4], and that

\incoming radiance" is exactly the same as Kajiya's \two point transport intensity."

Furthermore, note that equation (10) di�ers from the transport equation for direc-

tional importance (7) only in the order of the arguments to the BRDF; however,

this function is symmetric by reciprocity, so the two transport equations are in fact

identical:

Theorem Incoming radiance L and directional importance � satisfy the same

transport equation.

In an entirely similar manner, we can also de�ne outgoing directional importance

�!(x! y) by the relation

�(y  x) = G(x$ y)�!(x! y): (11)

Intuitively, �! is the importance leaving x in the direction of y, whereas � is the

importance arriving at y from the direction of x.

The following theorem is then easy to check:

Theorem Radiance L and outgoing directional importance �! satisfy the same

transport equation.

It is therefore natural to give outgoing directional importance the same units as

radiance, and to propagate outgoing directional importance from the eye in exactly

the same fashion as radiance is propagated from the light sources.

Since the two formulations|incoming or outgoing|are mathematically equivalent,

there would seem at �rst to be no particular advantage of using one formulation

over the other for computing the transport of radiance and directional importance.
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However, inspection of equations (1) and (10) reveals one major di�erence: if we

ignore for the moment any ideal specular re
ection, then the outgoing quantities at

any surface point are continuous functions of angle, whereas the incoming quanti-

ties may have discontinuities, occuring, for instance, along shadow boundaries. Such

discontinuities would hinder the use of spherical harmonics to represent the distri-

butions [7] since spherical harmonic expansions of discontinuous functions converge

slowly.

By using the outgoing formulations of both radiance and directional importance,

we can employ spherical harmonics to represent both types of quantities using rel-

atively few terms. Using outgoing formulations for both quantities also simpli�es

the development of an importance-driven radiance algorithm, since it allows both

radiance and importance to be transported identically.

5 Preliminary results

Smits et al. [8] demonstrated that the use of importance can dramatically reduce the

time to compute radiosities when much of the scene is invisible. Preliminary results,

based on a hierarchical algorithm we are currently developing, indicate that similar

speedups are possible when transporting radiance and directional importance. (The

details of our algorithm and our methods for estimating error will be presented in

a subsequent paper.)

In addition, our results indicate that directional importance allows speedups even

when all objects are visible. Consider, for example, the four di�erent \Cornell box"

scenes in �gure 1. Image (a) shows the standard Cornell box, with a di�usely-

emitting overhead light source and di�usely-re
ecting walls. Image (b) shows the

same di�use box, with di�use lights placed near the walls; here, the radiance fall-o�

with distance is accentuated. In image (c) the walls are again di�use re
ectors, but

the light sources are highly directional|very little light is emitted toward the eye.

In image (d), the light sources are directional and the walls are glossy.

We have used 
at-shaded versions of images (b) and (d) as reference solutions,

as shown in �gure 2. These reference images were generated using our radiance

program, but with importance disabled. For each image, the program was allowed
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to re�ne the solution until the root-mean-squared discrepancy between successive

images was less than 1%.

The solutions were computed with and without importance, and compared to the

reference solutions. Figure 3 plots root-mean-squared error versus the number of

links in the hierarchical system for images (b) and (d). Note that the importance-

driven algorithm requires twice as many links as the algorithm without importance

for the early iterations since importance is propagated in addition to radiance. How-

ever, as re�nement proceeds, the overhead of transporting importance is eventually

repayed by a reduction in the number of links.

The glossy scene of image (d) demonstrates the bene�t of using directional impor-

tance even when all objects are visible. This scene has four light sources, but only

one of the lights contributes radiance in the direction of the eye. In this case, for

a 1% error, the importance-driven algorithm requires 1/4 the number of radiance

links, along with roughly an equal number of importance links, yielding 1/2 the

number of links overall. Note, however, that the gain from using importance can be

made arbitrarily high by increasing the number of light sources that do not con-

tribute visibly to the image, even if all objects are visible. Of course, when objects

are also hidden, the gain is even greater.

Note also that the use of directional importance provides moderate gains even when

all objects are visible in purely di�use environments, as indicated by the results for

image (b). This slight advantage occurs because our importance-driven re�nement

strategy is based on projected area, which depends on the particular orientation

of each patch with respect to the viewer. Patches with smaller projected areas

receive less importance since they contribute less to the visible scene. Thus, as the

error tolerance is reduced, the importance-driven algorithm eventually reduces the

number of links on obliquely oriented patches enough to produce an overall speedup.

6 Summary

Using ideas from linear operator theory, we have developed a theoretical framework

for extending the de�nition of importance to the general case of directional re
ec-

tion. The framework was also used to show that a variant of importance, namely
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outgoing directional importance, satis�es the same transport equation as radiance.

The distribution of outgoing directional importance in a scene is therefore equiva-

lent to the distribution of radiance that would occur if the eye were the only radiant

emitter.

We are currently developing a hierarchical algorithm based on outgoing directional

importance. Although numerous aspects of the algorithm require further investi-

gation, our preliminary results indicate that this adjoint formulation has all the

advantages of importance as used in Smits et al. [8]. Additionally, directional im-

portance also seems to provide speedups even when all objects are visible. We plan

to o�er a detailed description of the algorithm in a subsequent paper.
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Figure 1 Four Gouraud-shaded Cornell boxes with di�erent illumination and

re
ectances: (a) di�use overhead light source, di�use re
ection; (b) di�use light

sources, di�use re
ection; (c) directional light sources, di�use re
ection; (d) direc-

tional light sources, glossy re
ection.
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Figure 2 Flat-shaded Cornell boxes, corresponding to images (b) and (d) of �gure 1.
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Figure 3 Root-mean-squared error versus number of links for images (b) and (d)

of �gure 1.
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