Professional Elegancy ...

Any engineer learns the mathematical notation through which two real numbers, for example,

$$
1+1=2
$$

can be written down very simply.
Even so, this form is wrong, for being too trivial and for showing a total lack of style.

Since our very first Math lessons we have known that,

$$
\begin{gathered}
1=\ln (e) \\
\text { and also that, } \\
1=\sin ^{2}(p)+\cos ^{2}(p)
\end{gathered}
$$

besides this, everybody knows that,

$$
2=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

So being, the expression,

$$
1+1=2
$$

can be re-written in a more elegant form,
$\ln (e)+\sin ^{2}(p)+\cos ^{2}(p)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$
which, as we can easily observe, is a lot more scientific and easier to understand.

It is known that:

$1=\cosh (q) * \sqrt{1-\tanh ^{2}(q)}$

and that,

$$
e=\lim _{z \rightarrow \infty}\left(1+\frac{1}{z}\right)^{z}
$$

Hence resulting,

$$
\ln (e)+\sin ^{2}(p)+\cos ^{2}(p)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

and can further be written as follows, offering

 substantial clarity and transparency,$$
\ln \left(\lim _{(i \rightarrow \infty}\left(1+\frac{1}{z}\right)^{2}\right)+\sin ^{2}(p)+\cos ^{2}(p)=\sum_{n=0}^{\infty} \frac{\cosh (q) * \sqrt{1-\tanh ^{2}(q)}}{2^{n}}
$$

Considering that,

$$
0!=1
$$

and that the inverted matrix of a transposed matrix equals the transposed matrix of an inverted matrix (presuming an unidimensional space), we obtain the following simplification (using vectorial notation \bar{X}),

$$
\left(\bar{X}^{T}\right)^{-1}-\left(\bar{X}^{-1}\right)^{T}=0
$$

If both expressions are unified,

$$
0!=1
$$

and

$$
\left(\bar{X}^{T}\right)^{-1}-\left(\bar{X}^{-1}\right)^{T}=0
$$

we would obviously obtain,

$$
\left(\left(\bar{X}^{T}\right)^{-1}-\left(\bar{X}^{-1}\right)^{T}\right)!=1
$$

Applying the above simplifications

Obtaining finally, in a total elegant form, legible, brief and comprehensible to anyone, the equation:

$$
\left.\ln \left(\lim _{i \rightarrow \infty}\left(\left(\left(\bar{X}^{T}\right)^{-1}-\left(\bar{X}^{-1}\right)^{T}\right)+\frac{1}{z}\right)^{2}\right)+\sin ^{2}(p)+\cos ^{2}(p)=\sum_{n=0}^{\infty} \frac{\cosh (q)^{*} \sqrt{1-\tanh ^{2}(q)}}{2^{n}} \right\rvert\,
$$

(which, being honest, is by far more professional than the original $1+1=2$)

Send this message to a wise and intelligent person. Send it also to your friends, who will come to appreciate your sensible and humble engineering soul ...

