Int J Radiat Oncol Biol Phys 1999 Jan 15;43(2):455-67

A non-invasive immobilization system and related quality assurance for dynamic intensity modulated radiation therapy of intracranial and head and neck disease.

Tsai JS, Engler MJ, Ling MN, Wu JK, Kramer B, Dipetrillo T, Wazer DE Department of Radiation Oncology, New England Medical Center Hospital and Tufts University School of Medicine, Boston, MA 02111, USA.

PURPOSE: To develop and implement a non-invasive immobilization system guided by a dedicated quality assurance (QA) program for dynamic intensity-modulated radiotherapy (IMRT) of intracranial and head and neck disease, with IMRT delivered using the NOMOS Corporation's Peacock System and MIMiC collimator.

METHODS AND MATERIALS: Thermoplastic face masks are combined with cradle-shaped polyurethane foaming agents and a dedicated quality assurance program to create a customized headholder system (CHS). Plastic shrinkage was studied to understand its effect on immobilization. Fiducial points for computerized tomography (CT) are obtained by placing multiple dabs of barium paste on mask surfaces at intersections of laser projections used for patient positioning. Fiducial lines are drawn on the cradle along laser projections aligned with nasal surfaces. Lateral CT topograms are annotated with a crosshair indicating the origin of the treatment planning and delivery coordinate system, and with lines delineating the projections of superior-inferior field borders of the linear accelerator's secondary collimators, or with those of the fully open MIMiC. Port films exposed with and without the MIMIC are compared to annotated topograms to measure positional variance (PV) in superior-inferior (SI), right-left (RL), and anterior posterior (AP) directions. MIMiC vane patterns superposed on port films are applied to verify planned patterns. A 12-patient study of PV was performed by analyzing positions of 10 anatomic points on repeat CT topograms, plotting histograms of PV, and determining average PV.

RESULTS AND DISCUSSION: A 1.5+/-0.3 mm SD shrinkage per 70 cm of thermoplastic was observed over 24 h. Average PV of 1.0+/-0.8, 1.2+/-1.1, and 1.3+/-0.8 mm were measured in SI, AP, and RL directions, respectively. Lateral port films exposed with and without the MIMiC showed PV of 0.2+/-1.3 and 0.8+/-2.2 mm in AP and SI directions. Vane patterns superimposed on port films consistently verified the planned patterns.

CONCLUSION: The CHS provided adequately reproducible immobilization for dynamic IMRT, and may be applicable to decrease PV for other cranial and head and neck external beam radiation therapy.