/* ecrypt-portable.h */ /* * WARNING: the conversions defined below are implemented as macros, * and should be used carefully. They should NOT be used with * parameters which perform some action. E.g., the following two lines * are not equivalent: * * 1) ++x; y = ROTL32(x, n); * 2) y = ROTL32(++x, n); */ /* * *** Please do not edit this file. *** * * The default macros can be overridden for specific architectures by * editing 'ecrypt-machine.h'. */ #ifndef ECRYPT_PORTABLE #define ECRYPT_PORTABLE #include "ecrypt-config.h" /* ------------------------------------------------------------------------- */ /* * The following types are defined (if available): * * u8: unsigned integer type, at least 8 bits * u16: unsigned integer type, at least 16 bits * u32: unsigned integer type, at least 32 bits * u64: unsigned integer type, at least 64 bits * * s8, s16, s32, s64 -> signed counterparts of u8, u16, u32, u64 * * The selection of minimum-width integer types is taken care of by * 'ecrypt-config.h'. Note: to enable 64-bit types on 32-bit * compilers, it might be necessary to switch from ISO C90 mode to ISO * C99 mode (e.g., gcc -std=c99). */ #ifdef I8T typedef signed I8T s8; typedef unsigned I8T u8; #endif #ifdef I16T typedef signed I16T s16; typedef unsigned I16T u16; #endif #ifdef I32T typedef signed I32T s32; typedef unsigned I32T u32; #endif #ifdef I64T typedef signed I64T s64; typedef unsigned I64T u64; #endif /* * The following macros are used to obtain exact-width results. */ #define U8V(v) ((u8)(v) & U8C(0xFF)) #define U16V(v) ((u16)(v) & U16C(0xFFFF)) #define U32V(v) ((u32)(v) & U32C(0xFFFFFFFF)) #define U64V(v) ((u64)(v) & U64C(0xFFFFFFFFFFFFFFFF)) /* ------------------------------------------------------------------------- */ /* * The following macros return words with their bits rotated over n * positions to the left/right. */ #define ECRYPT_DEFAULT_ROT #define ROTL8(v, n) \ (U8V((v) << (n)) | ((v) >> (8 - (n)))) #define ROTL16(v, n) \ (U16V((v) << (n)) | ((v) >> (16 - (n)))) #define ROTL32(v, n) \ (U32V((v) << (n)) | ((v) >> (32 - (n)))) #define ROTL64(v, n) \ (U64V((v) << (n)) | ((v) >> (64 - (n)))) #define ROTR8(v, n) ROTL8(v, 8 - (n)) #define ROTR16(v, n) ROTL16(v, 16 - (n)) #define ROTR32(v, n) ROTL32(v, 32 - (n)) #define ROTR64(v, n) ROTL64(v, 64 - (n)) #include "ecrypt-machine.h" /* ------------------------------------------------------------------------- */ /* * The following macros return a word with bytes in reverse order. */ #define ECRYPT_DEFAULT_SWAP #define SWAP16(v) \ ROTL16(v, 8) #define SWAP32(v) \ ((ROTL32(v, 8) & U32C(0x00FF00FF)) | \ (ROTL32(v, 24) & U32C(0xFF00FF00))) #ifdef ECRYPT_NATIVE64 #define SWAP64(v) \ ((ROTL64(v, 8) & U64C(0x000000FF000000FF)) | \ (ROTL64(v, 24) & U64C(0x0000FF000000FF00)) | \ (ROTL64(v, 40) & U64C(0x00FF000000FF0000)) | \ (ROTL64(v, 56) & U64C(0xFF000000FF000000))) #else #define SWAP64(v) \ (((u64)SWAP32(U32V(v)) << 32) | (u64)SWAP32(U32V(v >> 32))) #endif #include "ecrypt-machine.h" #define ECRYPT_DEFAULT_WTOW #ifdef ECRYPT_LITTLE_ENDIAN #define U16TO16_LITTLE(v) (v) #define U32TO32_LITTLE(v) (v) #define U64TO64_LITTLE(v) (v) #define U16TO16_BIG(v) SWAP16(v) #define U32TO32_BIG(v) SWAP32(v) #define U64TO64_BIG(v) SWAP64(v) #endif #ifdef ECRYPT_BIG_ENDIAN #define U16TO16_LITTLE(v) SWAP16(v) #define U32TO32_LITTLE(v) SWAP32(v) #define U64TO64_LITTLE(v) SWAP64(v) #define U16TO16_BIG(v) (v) #define U32TO32_BIG(v) (v) #define U64TO64_BIG(v) (v) #endif #include "ecrypt-machine.h" /* * The following macros load words from an array of bytes with * different types of endianness, and vice versa. */ #define ECRYPT_DEFAULT_BTOW #if (!defined(ECRYPT_UNKNOWN) && defined(ECRYPT_I8T_IS_BYTE)) #define U8TO16_LITTLE(p) U16TO16_LITTLE(((u16*)(p))[0]) #define U8TO32_LITTLE(p) U32TO32_LITTLE(((u32*)(p))[0]) #define U8TO64_LITTLE(p) U64TO64_LITTLE(((u64*)(p))[0]) #define U8TO16_BIG(p) U16TO16_BIG(((u16*)(p))[0]) #define U8TO32_BIG(p) U32TO32_BIG(((u32*)(p))[0]) #define U8TO64_BIG(p) U64TO64_BIG(((u64*)(p))[0]) #define U16TO8_LITTLE(p, v) (((u16*)(p))[0] = U16TO16_LITTLE(v)) #define U32TO8_LITTLE(p, v) (((u32*)(p))[0] = U32TO32_LITTLE(v)) #define U64TO8_LITTLE(p, v) (((u64*)(p))[0] = U64TO64_LITTLE(v)) #define U16TO8_BIG(p, v) (((u16*)(p))[0] = U16TO16_BIG(v)) #define U32TO8_BIG(p, v) (((u32*)(p))[0] = U32TO32_BIG(v)) #define U64TO8_BIG(p, v) (((u64*)(p))[0] = U64TO64_BIG(v)) #else #define U8TO16_LITTLE(p) \ (((u16)((p)[0]) ) | \ ((u16)((p)[1]) << 8)) #define U8TO32_LITTLE(p) \ (((u32)((p)[0]) ) | \ ((u32)((p)[1]) << 8) | \ ((u32)((p)[2]) << 16) | \ ((u32)((p)[3]) << 24)) #ifdef ECRYPT_NATIVE64 #define U8TO64_LITTLE(p) \ (((u64)((p)[0]) ) | \ ((u64)((p)[1]) << 8) | \ ((u64)((p)[2]) << 16) | \ ((u64)((p)[3]) << 24) | \ ((u64)((p)[4]) << 32) | \ ((u64)((p)[5]) << 40) | \ ((u64)((p)[6]) << 48) | \ ((u64)((p)[7]) << 56)) #else #define U8TO64_LITTLE(p) \ ((u64)U8TO32_LITTLE(p) | ((u64)U8TO32_LITTLE((p) + 4) << 32)) #endif #define U8TO16_BIG(p) \ (((u16)((p)[0]) << 8) | \ ((u16)((p)[1]) )) #define U8TO32_BIG(p) \ (((u32)((p)[0]) << 24) | \ ((u32)((p)[1]) << 16) | \ ((u32)((p)[2]) << 8) | \ ((u32)((p)[3]) )) #ifdef ECRYPT_NATIVE64 #define U8TO64_BIG(p) \ (((u64)((p)[0]) << 56) | \ ((u64)((p)[1]) << 48) | \ ((u64)((p)[2]) << 40) | \ ((u64)((p)[3]) << 32) | \ ((u64)((p)[4]) << 24) | \ ((u64)((p)[5]) << 16) | \ ((u64)((p)[6]) << 8) | \ ((u64)((p)[7]) )) #else #define U8TO64_BIG(p) \ (((u64)U8TO32_BIG(p) << 32) | (u64)U8TO32_BIG((p) + 4)) #endif #define U16TO8_LITTLE(p, v) \ do { \ (p)[0] = U8V((v) ); \ (p)[1] = U8V((v) >> 8); \ } while (0) #define U32TO8_LITTLE(p, v) \ do { \ (p)[0] = U8V((v) ); \ (p)[1] = U8V((v) >> 8); \ (p)[2] = U8V((v) >> 16); \ (p)[3] = U8V((v) >> 24); \ } while (0) #ifdef ECRYPT_NATIVE64 #define U64TO8_LITTLE(p, v) \ do { \ (p)[0] = U8V((v) ); \ (p)[1] = U8V((v) >> 8); \ (p)[2] = U8V((v) >> 16); \ (p)[3] = U8V((v) >> 24); \ (p)[4] = U8V((v) >> 32); \ (p)[5] = U8V((v) >> 40); \ (p)[6] = U8V((v) >> 48); \ (p)[7] = U8V((v) >> 56); \ } while (0) #else #define U64TO8_LITTLE(p, v) \ do { \ U32TO8_LITTLE((p), U32V((v) )); \ U32TO8_LITTLE((p) + 4, U32V((v) >> 32)); \ } while (0) #endif #define U16TO8_BIG(p, v) \ do { \ (p)[0] = U8V((v) ); \ (p)[1] = U8V((v) >> 8); \ } while (0) #define U32TO8_BIG(p, v) \ do { \ (p)[0] = U8V((v) >> 24); \ (p)[1] = U8V((v) >> 16); \ (p)[2] = U8V((v) >> 8); \ (p)[3] = U8V((v) ); \ } while (0) #ifdef ECRYPT_NATIVE64 #define U64TO8_BIG(p, v) \ do { \ (p)[0] = U8V((v) >> 56); \ (p)[1] = U8V((v) >> 48); \ (p)[2] = U8V((v) >> 40); \ (p)[3] = U8V((v) >> 32); \ (p)[4] = U8V((v) >> 24); \ (p)[5] = U8V((v) >> 16); \ (p)[6] = U8V((v) >> 8); \ (p)[7] = U8V((v) ); \ } while (0) #else #define U64TO8_BIG(p, v) \ do { \ U32TO8_BIG((p), U32V((v) >> 32)); \ U32TO8_BIG((p) + 4, U32V((v) )); \ } while (0) #endif #endif #include "ecrypt-machine.h" /* ------------------------------------------------------------------------- */ #endif