MULTI-CORE BENCHMARKING 1

Multi-Newton: A Multi-Core Benchmark Used to
Improve Algorithmic Differentiation

Bradley M. Bell and Peter Hepperger
October 1, 2012

Abstract—Implementing code that is efficient in a multi-core performance. In addition, the special allocator can beetirn
environment is one of the challenges of modern software engi- off and any replacement for the system allocator can be used.
neering. To meet this challenge, future software, including Auto- Besides the memory allocation, managing a team of threads
matic Differentiation (also called Algorithmic Differentiation and L -
abbreviated as AD) will have to avoid excessive synchronization causes fqrther overhead, Wh'ch may not amortize fqr .small
barriers between threads as well as manage memory efficiently. tasks. This includes increased inter-processor commitionca
We present an application of Newton’s method that finds all the due to invalid cache pages caused by writing to shared arrays
zeros of a nonlinear function in an interval. This is being used and data structures, often referred to as false sharing;[8]g
as a benchmark to improve the multi-core performance of the Testing the actual speed of parallel algorithms is an im-

open source AD software package CppAD. Different threading . a
systems, and different versions of this software package, arasily portant step in the development of multi-threaded software

compared for speed of execution. As an example of the use ofS€€, [9], [_10], [11], [12]. In this paper, we describe theailst
this benchmark, we compare the results for three versions of the of a multi-threaded Newton method benchmark that can be

software package. These versions correspond to improvementsused with and without AD. It is important to compare results
[Phabgenerz]ral ﬁ)(urpoze hC++ T?ulrgl-thr(;eagmg memorﬁ/ allocator. for gifferent threading systems; e.g., [13]. The benchmark
e benchmark, and the multi-threade memory ai ocator, are
distributed with CppAD. code that is .par'tlcullar to the threading system is sgparaie a
. . has an application interface (API) that is easy to implement
Index Terms—benchmark, multi-thread, multi-core, memory for 5 particular threading library. We show the benchmark
allchtlon,AgpenMP, pthreads, boost-threads, automatic differ results for various machines with8 cores, using various
entiation, . - . ’
threading systems, and various versions of the open source
AD software package CppAD. The benchmark, and the multi-
|. INTRODUCTION threaded memory allocator, are distributed with this pgeka

Increasing the number of CPU cores has replaced increasing
clock speed as a means of making computers faster [1]. The Il. BENCHMARK SYSTEM
advent of inexpensive computers with many cores makes itln order to obtain reliable results, tests with a runtime of
important to take advantage of these cores; e.g., [2]. TH@ss than one second are repeated until a runtime of at least
requires substantial changes to software, including Aatam one second is reached and the average runtime is used for the
Differentiation (AD); see Section V or [3]. Reverse modé&orresponding test results. The routineam cr eat e, called
AD uses a single global tape that records the floating poidt the beginning of the program, creates new threads. The
operations corresponding to a function evaluation; e4j., [routine t eam destroy, called at the end of the program,
This approach is not thread-safe because different thredggoves the new threads. The runtime for the create and
would be reading and writing the same memory. destroy routines is not included in the average runtimes Th

Introducing separate tapes for each thread poses additioigaltine t hr ead_wor k is called once for each repeat of the
challenges even if no explicit barriers or synchronizatioour. test and the runtime for this routine is included in the agera
Allocating memory causes implicit blocking while threadguntimes. The time used to divide the work up, before each
wait a substantial amount of time for other threads befof&ll to t hread_work, and to combine the results, after each
their request for memory is finally executed by the operatirfill to t hr ead_wor k, is also included. The average runtime
system. Benchmark testing made this problem evident ifused for our benchmark comparisons, see, e.g., the sesult
version 2011 of CppAD [5]. A special memory allocator, thaft Figurel 2.
is built on top of the system allocator, is now used to avoisl th The multi-threading benchmark tests are the same for each
problem. For a discussion of other multi-threading memo#ireading system. The only threading system specific code is
allocators see [6] and [7] or search the web fomal | oc, an implementation of the eam thread interface specified
tcmal | oc, and pthread_al l oc. A special allocator was below. The following functions are used in this specificatio

written because this AD software makes extensive use af stat m = t hread_nun()

memory and efficient management of this memory is key to its The return valuen has typesi ze_t and uniquely
identifies the current thread. This value is between
BM Bell is with IHME & APL University of Washington, Seat] zero and the total number of threads minus one.
Washington USApr adbel | @w. edu b =i
P. Hepperger is with Technische UniveésitMiinchen, Garching bei = in_parallel ()

Miinchen, Germanyet er . hepper ger @ um de The return valueb has typebool . If the current

MULTI-CORE BENCHMARKING 2

execution mode is known to be sequentibl,is 1) Sequential Division of WorkFor m = 0,..., M — 1,

f al se. Otherwise it ist rue (current mode may be denote the number of sub-intervals for threadby

parallel). .
The following threading specific interface is declared ie th Lm] = {ﬂoor(J/M) 1 1hm< -mod(J, M),
file t eam t hr ead. hpp. These routines start, use, and stop floor(.J/M) otherwise

a team of threads that can be used with the benchmark t?ﬂev = (8—a)/J to denote the length of each of thesub-
Example implementations for OpenMP threads, Boost thieaglsiervals. The master thread computés)] (the start) and[m]

and POSIX threads are provided with the CppAD package(the end) of the sub-intervals handled by threadvhere
The return valueok has typebool and isfal se if an

error is detected, otherwise it ig ue. Calls to the routines sim] =a+v Z L[p], e[m]=s[m]+~yL[m].
t eam cr eat e, t eam wor k, andt eam dest r oy, can only be p<m
done by the master thread; i.e., the thread number must figsse are recomputed for each repeat of this test. Note, for
zero. In addition, they can only be done in sequential execut ,,, - (. s[m] = e[m — 1].
mode within_parallel() equal tof al se. Execution will also 2) Parallel Computation: For threadm = 0,...,M — 1,
be sequential when these calls return. the following computations are done in parallel: For=
ok = team creat e(num threads) 0,...,L[m], the lower and upper bound of tidiegh sub-interval
This call creates a team of threads. The argumefalr threadm are
num threadshas typesi ze_t, is greater tha, and
specifies the number of threads in this team. Thiglm: ¢} = slm] +~£, b[m,f] = e[m] —~(L[m] — 1 —¢).
initializes t eam wor k to be used witmum threads pgte that a[m,0] = s[m] and blm,L[m] — 1] = e[m)]
threads. It also createsum threadsl new threads (even with round-off error in floating point arithmetic). &h
and puts them in a waiting state. bounded Newton method is applied on the sub-intervals
ok = teeam wor k(worker) [a[m,] , bm,/]]. Use S[m] to denote the union from
This routine may be called one or more times be — (to ¢ = L[m] — 1 of the bounded Newton results; i.e.,
tween the call ta eam cr eat e andt eam destroy. the approximate solutions for thread This set is stored as a
The argumentvorker is a function pointer of type yector in increasing order (to make the sequential comiginat
bool worker(voi d) . Each call tot eam work runs of work faster). For¢ > 0 it is necessary to check that the
num threadsversions ofworkerwith the correspond- sojytion is not the same as the solution for the previous sub-
ing thread_nun() between0 and num threadsl interval. This can happen when the absolute function value
and different for each thread. is less thate at the lower bound for this interval (upper
ok = teamdestroy() bound for the previous interval). If the distance betweea tw
This routine terminates all the threads except for thgyjytions is less that, the solutions are combined to be the
master; i.e., it terminates the threads correspondigge corresponding to the smaller absolute function value.
to thread numbem =1, ..., num threads1. 3) Sequential Combination of WorkThe master thread
computes the union fromn = 0 to m = M — 1 of S[m)|
1. M ULTI-THREADED NEWTON METHOD BENCHMARK and returns it as the set of approximate solutions for thigeent
A. Bounded Newton Method interval [, 3]. For eachm > 0, it is necessary to check that
the first solution inS[m] is not within ~ of the last solution
in S[m — 1], which can happen if one of them is equal to
s[m] = e[m —1].

Given lower and upper boundas, b], a maximum number
of Newton iterationsK, and a convergence criteriaf) the
bounded Newton method either returns a singldten} such
thatzy € [a,b] and|f(zx)| < € or it returns the empty sét

1) Setzo = (a+b)/2, k = 0. IV. SINE WAVE EXAMPLE

2) If |f(zk)| < e, return{x}. For a concrete example, we apply the multi-threaded New-
3) If k= K, returng. ton method to find zeros of the function

4) If f(x)fY(xx) >0 andxy, = a, returng. 1 Nl

5) If f(z)fM (zx) <0 andxy = b, return. f(@) = N > sin(z).

6) Setyy, = i — f(xx)/fO (). n=0

7) Setxpy; = min[b, max(a, yx)], k =k +1, Goto[2. The parametelN controls how many sine function evaluations
and binary sums are performed during each function evalua-
B. Multi-Threaded Newton Method tion. For each iteration of the bounded Newton method, the

. . (1) . -
Given lower and upper bounds, 5], a maximum number derivative /1) (wy) is given by

of Newton iterationsk, a convergence criterion, a number 1 Nl

of threadsM, and a number of sub-intervals, the multi- FO () = N > cos(xy). 1)
threaded Newton method runs the bounded Newton method n=0

on J equally spaced sub-intervals ¢f, 5] and returns the = The multi-threaded Newton method lower and upper bounds
union of all of the solution points. area =0, § = (Z — 1)m, whereZ = 500 is the number

MULTI-CORE BENCHMARKING

nsum=10000 usead=no

45

35 4

2012_1_openmp
2012_0_openmp
2011_0_openmp
2012_1_pthread
2012_0_pthread
2011_0_pthread
2012_1_bthread
2012_0_bthread
2011_0_bthread

—

,,,,,,,

A

time (seconds)

10

0.1

One Thread: usead=no host=ihme006

Zolziliope‘nmp 4»—‘
2012_0_openmp ---x-—-
2011_0_openmp e
2012_1_pthread
1-2012_0_pthread
2011_0_pthread
2012_1_bthread
2012_0_bthread ~ —&-—
2011_0_bthread

T 0.001 L L L L
5 15 25 35 45 1 10 100 1000 10000 100000

number of threads nsum

Fig. 1. Hand coded derivative results for all versions ardhakadings Fig. 2. Hand coded derivative results for all versions, laleadings, using
using 48 cores andV = 10%. one thread and the same host for all cases (times are nearlycaleor all
nine cases).

of zeros in the intervala,). The number of sub-intervals _
J = 5000, the tolerance: is 102 times the upper boung With respecttaV for N > 102. Also note that, for the previous

times double precision machine epsilon, and the maximdigure, the value ofV divided by the maximum number of
number of iterations ig< — 20. threads is greater than this value; i.8}/48 > 10%.

Using multiple threads requires additional work for thread
A. Without Algorithmic Differentiation management. The time to create and des_troy threa_ds is not

)))] included in our results. On the other hand, time to split g th

The results in this section use equation (1), to COMPUiG, 1 wake up the other threads, put the threads back to,sleep
the derivatives required by the Bounded Newton Methodyy combine the work, is included in our test results; forenor
see Section Ill-A. The results for versio@811_0, 2012 0 etajls, see the discussion at the beginning of Section IilaVh
and2012_1, using OpenMP, Posix, and Boost threading Witfheading libraries provide a way to minimize this overhead

N = 10" are plotted in Figuré 1. The number of threads i§ is never negligible. In addition, false sharing has a majo
act on efficiency in a multi-threading environment; s@e [

plotted on the horizontal axis and the corresponding speﬁﬁip
(average execution time for one thread divided by the aeerag |; g interesting to see the difference in performance be-

execution time for the number of threads) is plotted on thgcan the different threading systems whah= 103, and
vertical axis. The number of subintervals for thread is hence there is less work per thread:; see Figure 3. Note that
floor(.//M) or floor(.J/M) + 1. Since the number of threadsgpenmp threading is doing the best, while Posix threadin an
M < 48 andJ = 5000, it follows that.J/M > 100 and hence gqqst threading seem to have an overhead that is significant
each thread is doing about the same amount of work. for this size of problem. This difference may be related to

Each curve corresponds to one machine and the machifg jmplementation of the threading independent interface
chosen was from one of two types. One type of machine hadg, eam creat e, t eam wor k, andt eam dest r oy in Sec-

48 AMD Opteron(tm) 6180 SE processors (512 KB cache agd, ;. The OpenMP system has higher level primitives that

2500 MHz). The other type had 64 AMD Opteron(tm) 6262, ake this interface simpler to implement. The implementa-
HE processors (2048 KB cache and 1600 MHz). Scaling eagllys for hoth Posix and Boost threading are similar. They
curve by the time for one thread corrects for the effect Qjse thread local storage to implemaritr ead_nunt(), and
using different machines. (Our tests indicate that theaéedc o rieors to implementeam wor k() . The actual implementa-
values are nearly the same for the two types of machines)usgghns can be found in [5]. It is also interesting to note the t

The horizontal axis value zero corresponds to one thredd, B formance for Posix and Boost threading starts to degrade
without use of the specific threading system. at 15 threads and.0?/15 < 102. Hence the amount of work

For each curve in Figure| 1, the speed difference betwegg thread is in the non-linear region of the plot in Figure 2.
horizontal axis values zero and one compares the different

threading systems to no threading system. While this is an S o

absolute comparison of the normalization (time for oneatije B- USing Algorithmic Differentiation

between different threading systems, it is not an absoluteThe results in this section use Algorithmic Differentiatio
comparison between the different versions. Figure 2 pluts tto compute the derivatives required by the Bounded New-
absolute execution time, corresponding to one thread agoa Method. The results for versiorzd11_0, 2012_0 and
function of N and for a fixed host machine. The horizonta?012_1, using OpenMP, Posix, and Boost threading with
axis valueN = 10* compares the normalization factors (timeV = 102 and N = 10° are plotted in Figures 4 and 5. These
for one thread) used in the previous figure. Note that thesesults show that, for all threadings, versizdi1_0 is slower
absolute times are almost identical for the different \@mrsi that versior2012_0 and2012_0 is slower thare012_1. The
and threading systems and that they are approximatelyrlingifference between these versions is discussed in Section V

MULTI-CORE BENCHMARKING 4

nsum=1000 usead=no nsum=1000 usead=yes
2012_1_openmp —+— 2012_1_openmp
45 --2012_0_openmp ---x--- 45 +-2012_1_pthread
2011_0_openmp e ~ 2012_1_bthread
2012_1_pthread e 2012_0_openmp
2012_0_pthread XXX; N 2012_0_pthread
35 --2011_0_pthread ':5*5 35 +-2012_0_bthread
2012_1_bthread X;;j/ 2011_0_openmp
2012_0_bthread ~ —&-- x§§ ¥ 2011_0_pthread
° 2011_0_bthread - P ° 2011_0_bthread
@ ¥ @
@ 25 o Q25
0 % n
15 A d 15
W B P
aes ol Vs T SNV 0l
o . ghTp
BT eseses oes 2 s vl
5 ¥ o2 Wornaea 5 Lo
m“ n"‘"
T
5 15 25 35 45 5 15 25 35 45
number of threads number of threads

Fig. 3. Hand coded derivative results for all versions ardhakadings Fig. 5. AD derivative results for all versions and all thraegs using48
using 48 cores andN = 103. cores andV = 103.

nsum=100 usead=yes One Thread: usead=yes host=ihme006

100 T T T
2012_1_openmp —+— 2012_1_openmp = —+—
45 2012 1 pthread = --x--- 2012_1_pthread ~ ---x---
2012_1 bthread ---%--- 2012_1 _bthread - /
2012_0_openmp 2012:0:openmp /
2012_0_pthread y 10 }2012_0_pthread yd 4
35 {-2012_0_bthread e 2012_0_bthread /
2011_0_openmp Xﬁ;?jx' - 2011_0_openmp /
et f ? —
2011_0_pthread - X@**ﬁ% » 3 2011_0_pthread ~ —a-— /
3 2011_0_bthread - i S 2011_0_bthread . /
@ 25 K o /
o T @ 1k p 4
@ % o
L 2
2 4
o = g
s !
15 x,{.;,g
K 7
i s o1} 1
& aseptrhl);;g::;m L2SR2RREZAA R /A//
SRR anedal™ -
5 & e
AAA 7
po ~
0.01 . . -
5 15 25 35 45 1 10 100 1000 10000

number of threads nsum

Fig. 4. AD deri2vative results for all versions and all thregps using48 Fig. 6. AD derivative results for all versions and all thrimys using one
cores andV = 10°. thread and the same host for all cases.

This improvement would not have been possible without th

benchmark presented in this paper. The correspondinguatlasoiaeﬁgumemS that depends on the independent variablesesreat

. N iabl i h It. Th I
times for one thread are plotted in Figure 6. Note that, f(‘)ar new variable corresponding to the result e overloaded

. ersions of the atomic operations stores the operations tha
N = 102 and N = 103, these absolute times are aImosg P P

. . . .) epend on the independent variables in a recording (often
|deqt!cal for the d'.ﬁerem ver3|ons'and threading systems referred to as the tape). One difference from ADOL-C is
addition, the time is a linear function df betweenN = 10

andN = 10°. Perhaps this is why the performance in Figure Tat the type for the floating point operations is a template

. rameter. This enabl n AD ifferenti
starts to degrade wher? divided by the number of threadspa ar ete s enables one to use : to diffe e.tate a
is less tharll0 (because the work per thread is too small fofruncnon where the source code that defines the function also
optimal use of the different threadz) uses AD (usinghAD<AD<doubl e>>). It also enables many other
P ' applications; e.g., using interval arithmetic for the fingt

point type and getting bounds on derivatives.

In the case of the sine wave example in Sectioh IV there
are approximatel2 N atomic operations. When an operation

CppAD records the floating point operations correspondingcording gets too long for the current capacity of the vecto
to an algorithm. It then uses this recording to computesoring the recording, it is extended and copied to new
arbitrary order forward and reverse mode derivatives in a-mavectors (which involves additional memory allocation).eTh
ner inspired by the software package ADOL-:C [14]. This isine function is special in that, although only one variable
accomplished by overloading the floating point operatoig. (e per operation is visible to the user, an extra hidden vagiabl
division) and elementary mathematical functions (e.@ diine is created for each operation. This variable corresponds to
function). We refer to these overloaded operators andifumgt the cosine function (because the derivative of the sineds th
as atomic operations which are actually functions with one oosine and the derivative of the cosine is minus the sined. Th
two arguments and one result. First the independent vagabValues and derivatives for many of the standard math funstio
are identified by the user. Then each atomic operation, wiine often computed in pairs. After the tape is recorded, the

V. TAPED ALGORITHMIC DIFFERENTIATION AND
MEMORY USAGE

MULTI-CORE BENCHMARKING 5

function values corresponding to each operation are daddcavectors of length\/ that are used to count the number of bytes
and stored. Then the derivative values corresponding th edhat are currently in use and available for each thread. &hes
operation are allocated and stored. (One can preallocatespvectors also have the false sharing problem described above
for the derivative values, and one can convert the entireln Version 2012 1, a structure is allocated separately for
summation to a single operator, but this is not done by tle&ach thread. This contains the counters for the number of
benchmark.) bytes that are currently in use and available for a thread. It
also contains two vectors of length One vector holds the
available list root pointer for each capacity and this tbrea
The other vector holds the in use root pointer for each capaci
and this thread (this is only used by the debug version of the
program). If a thread changes its structure, the cache Farot

VI. THE CPPAD MULTI-THREADED MEMORY
ALLOCATOR

This multi-threading memory allocatot hr ead_al | oc

comes with version 2012 and can be used separately;
without including all of CppAD. This allocator returns mems-,

ltRreads is still valid because the structure for other tiseda
stored in a different memory area.

ory with certain, predefined, discrete Capacities in terhs o You can create one of the versions Compared in this paper

bytes of memory. We denote these capacities:bg Z for
1=0,...,I —1, wherecy = 128 and

ci+1 = 3« floor[(¢c; + 1)/2].

The capacity values are not part of the CppAD API becau§
they are subject to future changes (as implemented, it isteas

change them). When a memory request is made, both a pointer

to the memory, and the corresponding capacity is returned. T
be specific, ifb bytes of memory are requested, a pointer to
c; bytes, and the value; are returned, whereis the minimal 3
index such thab < ¢;. Containers (e.gCppAD: : vect or) can

use the capacity information to determine if there is enoug‘B
space to add more elements or if another call to the memo y]
allocator must be made. [4]

Special versions were created for this paper using thetscrip
bi n/ speci al _versi on. sh which comes with CppAD [5]. [g
This simplifies what is different between the versions and
enables others to reproduce the results in this pafegsion (6]
2011 0 uses the system allocator with the capacity modifica-
tion mentioned above. In order to be thread-safe, the system
memory allocator uses mutual exclusion; i.e., only onedtire v
at a time can allocate new memory. When there are lots of
threads and memory allocation requests, a significant amoulg]
of time is spent while threads wait for their turn.

To avoid this sort of blocking, memory that is returned to
Version 20120 of t hread_al | oc is held for future use by [9]
the same thread and not returned to the system immediately.
This is accomplished using a singly linked list of thesgg;
available blocks of memory. For thread = 0,..., M — 1,
and capacity index = 0,...,I — 1, there is a root pointer
to the list of available blocks which we denote by, .;;.
When a block is returned tohread_al | oc, it is placed at
the front of this list. When a memory block of capacity
is requested for threah, it is taken from the front of this [12]
list. In the special case where there is no previously atksta
memory available, the system allocator is used to get maQrs;
memory for this thread. A special function call that retuatls
allocated memory to the system, is also provided.

In version 20120, the roots of the linked listgl,,.;; are [14]
stored in in a single vector of contiguous memory. When a
thread changes one of these values, it invalidates the ¢aehe
other threads are using to access this vector. This is esferr
to asfalse sharing since no two threads actually modify the
same data; see [8]. In addition, version 200 &lso has two

(11]

by executing the following commands (wheteer si on> is
replaced by2011_0, 2012_0, or2012_1):

svn checkout \
https://projects. coin-or.org/svn/ CppAD/ t runk
g trunk ; bin/special _version.sh <version>

REFERENCES

S. Pllana and J. L. Traff, “Introduction to the Scientifitogramming
special issue: Software development for multi-core computiysgems,”
Scientific Programmingvol. 17, no. 4, pp. 283-284, 2009.

Y. Cui, Y. Wang, Y. Chen, and Y. Shi, “Experience on compari
of operating systems scalability on the multi-core architext IEEE
International Conference on Cluster Computimp. 205-215, 2011.
A. Griewank and A. WaltherEvaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, Second EditicSIAM, 2008.
M. Fagan and A. Carle, “Reducing reverse-mode memory reqments
by using profile-driven checkpointingFuture Generation Computer
Systemsvol. 21, no. 8, pp. 1380-1390, 2005.

B. Bell, CppAD: a package for C++ algorithmic differentiation
http://www.coin-or.org/CppAD: Computational Infrasttuce for Oper-
ations Research, 2012.

E. Berger, K. McKinley, R. Blumore, and P. Wilson, “Hoara:scalable
memory allocator for multithreaded application§perating Systems
Review vol. 34, no. 5, pp. 117-28, 2000.

1 S. Schneider, D. Christos, and D. Nikolopoulos, “Lotationscious

multithreaded memory allocationjiternational Symposium on Memory
Managementvol. 2006, pp. 84-94, 2006.

T. Liu and E. D. Berger, “SHERIFF: precise detection andomatic
mitigation of false sharing,Proceedings of the 2011 ACM international
conference on Object oriented programming systems laregiamnd
applications 2011.

K.-Y. Chen, J. M. Chang, and T.-W. Hou, “Multithreading Java:
Performance and scalability on multicore systeni&EE Transactions
on Computersvol. 60, no. 11, pp. 1521-34, 2011.

P. Garcia and H. Korth, “Multithreaded architecturesdathe sort
benchmark,"1st International Workshop on Data Management on New
Hardware, DaMoN 2005, Co-located with ACM SIGMOD/PODS 2005
2005.

C.-S. Koong, C. Shih, P.-A. Hsiung, H.-J. Lai, C.-H. @gaW. C. Chu,
N.-L. Hsueh, and C.-T. Yang, “Automatic testing environmentrhulti-
core embedded software - ATEMESBurnal of Systems and Software
vol. 85, no. 1, pp. 43-60, 2012.

N. Zhang, “Computing optimised parallel speeded-up sbifeatures
(p-surf) on multi-core processorsfhternational Journal of Parallel
Programming vol. 38, no. 2, pp. 138-158, 2010.

P. Kegel, M. Schellmann, and S. Gorlatch, “Comparing progning
models for medical imaging on multi-core system8g@ncurrency and
Computation: Practice and Experienceol. 23, no. 10, pp. 1051-1065,
2011.

A. Griewank, A. Walther, and K. Kulshreshtha, “ADOL-Cauto-
matic differentiation by overloading in C++Computational Infras-
tructure for Operations Researchol. coin-or, no. https://projects.coin-
or.org/ADOL-C, 2012.

	Introduction
	Benchmark System
	Multi-Threaded Newton Method Benchmark
	Bounded Newton Method
	Multi-Threaded Newton Method
	Sequential Division of Work
	Parallel Computation
	Sequential Combination of Work

	Sine Wave Example
	Without Algorithmic Differentiation
	Using Algorithmic Differentiation

	Taped Algorithmic Differentiation and Memory Usage
	The CppAD Multi-Threaded Memory Allocator
	References

