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Abstract—Implementing code that is efficient in a multi-core
environment is one of the challenges of modern software engi-
neering. To meet this challenge, future software, including Auto-
matic Differentiation (also called Algorithmic Differentiation and
abbreviated as AD) will have to avoid excessive synchronization
barriers between threads as well as manage memory efficiently.
We present an application of Newton’s method that finds all the
zeros of a nonlinear function in an interval. This is being used
as a benchmark to improve the multi-core performance of the
open source AD software package CppAD. Different threading
systems, and different versions of this software package, are easily
compared for speed of execution. As an example of the use of
this benchmark, we compare the results for three versions of the
software package. These versions correspond to improvements
in a general purpose C++ multi-threading memory allocator.
The benchmark, and the multi-threaded memory allocator, are
distributed with CppAD.

Index Terms—benchmark, multi-thread, multi-core, memory
allocation, OpenMP, pthreads, boost-threads, automatic differ-
entiation, AD

I. I NTRODUCTION

Increasing the number of CPU cores has replaced increasing
clock speed as a means of making computers faster [1]. The
advent of inexpensive computers with many cores makes it
important to take advantage of these cores; e.g., [2]. This
requires substantial changes to software, including Automatic
Differentiation (AD); see Section V or [3]. Reverse mode
AD uses a single global tape that records the floating point
operations corresponding to a function evaluation; e.g., [4].
This approach is not thread-safe because different threads
would be reading and writing the same memory.

Introducing separate tapes for each thread poses additional
challenges even if no explicit barriers or synchronizationoccur.
Allocating memory causes implicit blocking while threads
wait a substantial amount of time for other threads before
their request for memory is finally executed by the operating
system. Benchmark testing made this problem evident in
version 2011 of CppAD [5]. A special memory allocator, that
is built on top of the system allocator, is now used to avoid this
problem. For a discussion of other multi-threading memory
allocators see [6] and [7] or search the web formtmalloc,
tcmalloc, and pthread_alloc. A special allocator was
written because this AD software makes extensive use of static
memory and efficient management of this memory is key to its
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performance. In addition, the special allocator can be turned
off and any replacement for the system allocator can be used.

Besides the memory allocation, managing a team of threads
causes further overhead, which may not amortize for small
tasks. This includes increased inter-processor communication
due to invalid cache pages caused by writing to shared arrays
and data structures, often referred to as false sharing; e.g., [8].

Testing the actual speed of parallel algorithms is an im-
portant step in the development of multi-threaded software;
see, [9], [10], [11], [12]. In this paper, we describe the details
of a multi-threaded Newton method benchmark that can be
used with and without AD. It is important to compare results
for different threading systems; e.g., [13]. The benchmark
code that is particular to the threading system is separate and
has an application interface (API) that is easy to implement
for a particular threading library. We show the benchmark
results for various machines with48 cores, using various
threading systems, and various versions of the open source
AD software package CppAD. The benchmark, and the multi-
threaded memory allocator, are distributed with this package.

II. B ENCHMARK SYSTEM

In order to obtain reliable results, tests with a runtime of
less than one second are repeated until a runtime of at least
one second is reached and the average runtime is used for the
corresponding test results. The routineteam_create, called
at the beginning of the program, creates new threads. The
routine team_destroy, called at the end of the program,
removes the new threads. The runtime for the create and
destroy routines is not included in the average runtimes. The
routine thread_work is called once for each repeat of the
test and the runtime for this routine is included in the average
runtimes. The time used to divide the work up, before each
call to thread_work, and to combine the results, after each
call to thread_work, is also included. The average runtime
is used for our benchmark comparisons, see, e.g., the results
in Figure 2.

The multi-threading benchmark tests are the same for each
threading system. The only threading system specific code is
an implementation of theteam_thread interface specified
below. The following functions are used in this specification:

m = thread_num()

The return valuem has typesize_t and uniquely
identifies the current thread. This value is between
zero and the total number of threads minus one.

b = in_parallel()

The return valueb has typebool. If the current
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execution mode is known to be sequential,b is
false. Otherwise it istrue (current mode may be
parallel).

The following threading specific interface is declared in the
file team_thread.hpp. These routines start, use, and stop
a team of threads that can be used with the benchmark test.
Example implementations for OpenMP threads, Boost threads,
and POSIX threads are provided with the CppAD package.

The return valueok has typebool and is false if an
error is detected, otherwise it istrue. Calls to the routines
team_create, team_work, andteam_destroy, can only be
done by the master thread; i.e., the thread number must be
zero. In addition, they can only be done in sequential execution
mode within parallel() equal tofalse. Execution will also
be sequential when these calls return.

ok = team_create( num threads)
This call creates a team of threads. The argument
num threadshas typesize_t, is greater than0, and
specifies the number of threads in this team. This
initializes team_work to be used withnum threads
threads. It also createsnum threads-1 new threads
and puts them in a waiting state.

ok = team_work( worker )
This routine may be called one or more times be-
tween the call toteam_create andteam_destroy.
The argumentworker is a function pointer of type
bool worker(void). Each call toteam_work runs
num threadsversions ofworkerwith the correspond-
ing thread_num() between0 and num threads-1
and different for each thread.

ok = team_destroy()

This routine terminates all the threads except for the
master; i.e., it terminates the threads corresponding
to thread numberm = 1 , . . . , num threads-1.

III. M ULTI -THREADED NEWTON METHOD BENCHMARK

A. Bounded Newton Method

Given lower and upper bounds[a, b], a maximum number
of Newton iterationsK, and a convergence criterionε, the
bounded Newton method either returns a singleton{xk} such
that xk ∈ [a, b] and |f(xk)| ≤ ε or it returns the empty set∅.

1) Setx0 = (a + b)/2, k = 0.
2) If |f(xk)| < ε, return{xk}.
3) If k = K, return∅.
4) If f(xk)f (1)(xk) ≥ 0 andxk = a, return∅.
5) If f(xk)f (1)(xk) ≤ 0 andxk = b, return∅.
6) Setyk = xk − f(xk)/f (1)(xk).
7) Setxk+1 = min[b , max(a , yk)], k = k + 1, Goto 2.

B. Multi-Threaded Newton Method

Given lower and upper bounds[α, β], a maximum number
of Newton iterationsK, a convergence criterionε, a number
of threadsM , and a number of sub-intervalsJ , the multi-
threaded Newton method runs the bounded Newton method
on J equally spaced sub-intervals of[α, β] and returns the
union of all of the solution points.

1) Sequential Division of Work:For m = 0, . . . ,M − 1,
denote the number of sub-intervals for threadm by

L[m] =

{

floor(J/M) + 1 if m < mod(J,M),

floor(J/M) otherwise.

Useγ = (β−α)/J to denote the length of each of theJ sub-
intervals. The master thread computess[m] (the start) ande[m]
(the end) of the sub-intervals handled by threadm where

s[m] = α + γ
∑

p<m

L[p] , e[m] = s[m] + γL[m] .

These are recomputed for each repeat of this test. Note, for
m > 0, s[m] = e[m − 1].

2) Parallel Computation:For threadm = 0, . . . ,M − 1,
the following computations are done in parallel: Forℓ =
0, . . . , L[m], the lower and upper bound of theℓ-th sub-interval
for threadm are

a[m, ℓ] = s[m] + γℓ , b[m, ℓ] = e[m] − γ(L[m] − 1 − ℓ).

Note that a[m, 0] = s[m] and b[m,L[m] − 1] = e[m]
(even with round-off error in floating point arithmetic). The
bounded Newton method is applied on the sub-intervals
[ a[m, ℓ] , b[m, ℓ] ]. Use S[m] to denote the union from
ℓ = 0 to ℓ = L[m] − 1 of the bounded Newton results; i.e.,
the approximate solutions for threadm. This set is stored as a
vector in increasing order (to make the sequential combination
of work faster). Forℓ > 0 it is necessary to check that the
solution is not the same as the solution for the previous sub-
interval. This can happen when the absolute function value
is less thatε at the lower bound for this interval (upper
bound for the previous interval). If the distance between two
solutions is less thatγ, the solutions are combined to be the
one corresponding to the smaller absolute function value.

3) Sequential Combination of Work:The master thread
computes the union fromm = 0 to m = M − 1 of S[m]
and returns it as the set of approximate solutions for the entire
interval [α, β]. For eachm > 0, it is necessary to check that
the first solution inS[m] is not within γ of the last solution
in S[m − 1], which can happen if one of them is equal to
s[m] = e[m − 1].

IV. SINE WAVE EXAMPLE

For a concrete example, we apply the multi-threaded New-
ton method to find zeros of the function

f(x) =
1

N

N−1
∑

n=0

sin(x).

The parameterN controls how many sine function evaluations
and binary sums are performed during each function evalua-
tion. For each iteration of the bounded Newton method, the
derivativef (1)(xk) is given by

f (1)(xk) =
1

N

N−1
∑

n=0

cos(xk). (1)

The multi-threaded Newton method lower and upper bounds
are α = 0, β = (Z − 1)π, whereZ = 500 is the number
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Fig. 1. Hand coded derivative results for all versions and all threadings
using48 cores andN = 10

4.

of zeros in the interval[α, β]. The number of sub-intervals
J = 5000, the toleranceε is 102 times the upper boundβ
times double precision machine epsilon, and the maximum
number of iterations isK = 20.

A. Without Algorithmic Differentiation

The results in this section use equation (1), to compute
the derivatives required by the Bounded Newton Method;
see Section III-A. The results for versions2011_0, 2012_0
and2012_1, using OpenMP, Posix, and Boost threading with
N = 104 are plotted in Figure 1. The number of threads is
plotted on the horizontal axis and the corresponding speed
(average execution time for one thread divided by the average
execution time for the number of threads) is plotted on the
vertical axis. The number of subintervals for threadm is
floor(J/M) or floor(J/M) + 1. Since the number of threads
M ≤ 48 andJ = 5000, it follows thatJ/M > 100 and hence
each thread is doing about the same amount of work.

Each curve corresponds to one machine and the machine
chosen was from one of two types. One type of machine had
48 AMD Opteron(tm) 6180 SE processors (512 KB cache and
2500 MHz). The other type had 64 AMD Opteron(tm) 6262
HE processors (2048 KB cache and 1600 MHz). Scaling each
curve by the time for one thread corrects for the effect or
using different machines. (Our tests indicate that these scaled
values are nearly the same for the two types of machines used.)
The horizontal axis value zero corresponds to one thread, but
without use of the specific threading system.

For each curve in Figure 1, the speed difference between
horizontal axis values zero and one compares the different
threading systems to no threading system. While this is an
absolute comparison of the normalization (time for one thread)
between different threading systems, it is not an absolute
comparison between the different versions. Figure 2 plots the
absolute execution time, corresponding to one thread as a
function of N and for a fixed host machine. The horizontal
axis valueN = 104 compares the normalization factors (time
for one thread) used in the previous figure. Note that these
absolute times are almost identical for the different versions
and threading systems and that they are approximately linear
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Fig. 2. Hand coded derivative results for all versions, all threadings, using
one thread and the same host for all cases (times are nearly identical for all
nine cases).

with respect toN for N ≥ 102. Also note that, for the previous
figure, the value ofN divided by the maximum number of
threads is greater than this value; i.e.,104/48 > 102.

Using multiple threads requires additional work for thread
management. The time to create and destroy threads is not
included in our results. On the other hand, time to split up the
work, wake up the other threads, put the threads back to sleep,
and combine the work, is included in our test results; for more
details, see the discussion at the beginning of Section II. While
threading libraries provide a way to minimize this overhead,
it is never negligible. In addition, false sharing has a major
impact on efficiency in a multi-threading environment; see [8].

It is interesting to see the difference in performance be-
tween the different threading systems whenN = 103, and
hence there is less work per thread; see Figure 3. Note that
OpenMP threading is doing the best, while Posix threading and
Boost threading seem to have an overhead that is significant
for this size of problem. This difference may be related to
the implementation of the threading independent interface;
seeteam_create, team_work, andteam_destroy in Sec-
tion II. The OpenMP system has higher level primitives that
make this interface simpler to implement. The implementa-
tions for both Posix and Boost threading are similar. They
use thread local storage to implementthread_num(), and
barriers to implementteam_work(). The actual implementa-
tions can be found in [5]. It is also interesting to note that the
performance for Posix and Boost threading starts to degrade
at 15 threads and103/15 < 102. Hence the amount of work
per thread is in the non-linear region of the plot in Figure 2.

B. Using Algorithmic Differentiation

The results in this section use Algorithmic Differentiation
to compute the derivatives required by the Bounded New-
ton Method. The results for versions2011_0, 2012_0 and
2012_1, using OpenMP, Posix, and Boost threading with
N = 102 andN = 103 are plotted in Figures 4 and 5. These
results show that, for all threadings, version2011_0 is slower
that version2012_0 and2012_0 is slower than2012_1. The
difference between these versions is discussed in Section VI.
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This improvement would not have been possible without the
benchmark presented in this paper. The corresponding absolute
times for one thread are plotted in Figure 6. Note that, for
N = 102 and N = 103, these absolute times are almost
identical for the different versions and threading systems. In
addition, the time is a linear function ofN betweenN = 10
andN = 104. Perhaps this is why the performance in Figure 4
starts to degrade when102 divided by the number of threads
is less than10 (because the work per thread is too small for
optimal use of the different threads).

V. TAPED ALGORITHMIC DIFFERENTIATION AND

MEMORY USAGE

CppAD records the floating point operations corresponding
to an algorithm. It then uses this recording to computes
arbitrary order forward and reverse mode derivatives in a man-
ner inspired by the software package ADOL-C [14]. This is
accomplished by overloading the floating point operators (e.g.,
division) and elementary mathematical functions (e.g., the sine
function). We refer to these overloaded operators and functions
as atomic operations which are actually functions with one or
two arguments and one result. First the independent variables
are identified by the user. Then each atomic operation, with
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arguments that depends on the independent variables, creates
a new variable corresponding to the result. The overloaded
versions of the atomic operations stores the operations that
depend on the independent variables in a recording (often
referred to as the tape). One difference from ADOL-C is
that the type for the floating point operations is a template
parameter. This enables one to use AD to differentiate a
function where the source code that defines the function also
uses AD (usingAD<AD<double>>). It also enables many other
applications; e.g., using interval arithmetic for the floating
point type and getting bounds on derivatives.

In the case of the sine wave example in Section IV there
are approximately2N atomic operations. When an operation
recording gets too long for the current capacity of the vectors
storing the recording, it is extended and copied to new
vectors (which involves additional memory allocation). The
sine function is special in that, although only one variable
per operation is visible to the user, an extra hidden variable
is created for each operation. This variable corresponds to
the cosine function (because the derivative of the sine is the
cosine and the derivative of the cosine is minus the sine). The
values and derivatives for many of the standard math functions
are often computed in pairs. After the tape is recorded, the
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function values corresponding to each operation are allocated
and stored. Then the derivative values corresponding to each
operation are allocated and stored. (One can preallocate space
for the derivative values, and one can convert the entire
summation to a single operator, but this is not done by the
benchmark.)

VI. T HE CPPAD M ULTI -THREADED MEMORY

ALLOCATOR

This multi-threading memory allocatorthread_alloc
comes with version 2012 and can be used separately; i.e.,
without including all of CppAD. This allocator returns mem-
ory with certain, predefined, discrete capacities in terms of
bytes of memory. We denote these capacities byci ∈ Z+ for
i = 0, ..., I − 1, wherec0 = 128 and

ci+1 = 3 ∗ floor[(ci + 1)/2].

The capacity values are not part of the CppAD API because
they are subject to future changes (as implemented, it is easy to
change them). When a memory request is made, both a pointer
to the memory, and the corresponding capacity is returned. To
be specific, ifb bytes of memory are requested, a pointer to
ci bytes, and the valueci are returned, wherei is the minimal
index such thatb ≤ ci. Containers (e.g.CppAD::vector) can
use the capacity information to determine if there is enough
space to add more elements or if another call to the memory
allocator must be made.

Special versions were created for this paper using the script
bin/special_version.sh which comes with CppAD [5].
This simplifies what is different between the versions and
enables others to reproduce the results in this paper.Version
2011 0 uses the system allocator with the capacity modifica-
tion mentioned above. In order to be thread-safe, the system
memory allocator uses mutual exclusion; i.e., only one thread
at a time can allocate new memory. When there are lots of
threads and memory allocation requests, a significant amount
of time is spent while threads wait for their turn.

To avoid this sort of blocking, memory that is returned to
Version 2012 0 of thread_alloc is held for future use by
the same thread and not returned to the system immediately.
This is accomplished using a singly linked list of these
available blocks of memory. For threadm = 0, . . . ,M − 1,
and capacity indexi = 0, ..., I − 1, there is a root pointer
to the list of available blocks which we denote byAm·I+i.
When a block is returned tothread_alloc, it is placed at
the front of this list. When a memory block of capacityci

is requested for threadm, it is taken from the front of this
list. In the special case where there is no previously allocated
memory available, the system allocator is used to get more
memory for this thread. A special function call that returnsall
allocated memory to the system, is also provided.

In version 20120, the roots of the linked listsAm·I+i are
stored in in a single vector of contiguous memory. When a
thread changes one of these values, it invalidates the cachethe
other threads are using to access this vector. This is referred
to as false sharing, since no two threads actually modify the
same data; see [8]. In addition, version 20120 also has two

vectors of lengthM that are used to count the number of bytes
that are currently in use and available for each thread. These
vectors also have the false sharing problem described above.

In Version 2012 1, a structure is allocated separately for
each thread. This contains the counters for the number of
bytes that are currently in use and available for a thread. It
also contains two vectors of lengthI. One vector holds the
available list root pointer for each capacity and this thread.
The other vector holds the in use root pointer for each capacity
and this thread (this is only used by the debug version of the
program). If a thread changes its structure, the cache for other
threads is still valid because the structure for other threads is
stored in a different memory area.

You can create one of the versions compared in this paper
by executing the following commands (where<version> is
replaced by2011_0, 2012_0, or 2012_1 ):

svn checkout \
https://projects.coin-or.org/svn/CppAD/trunk
cd trunk ; bin/special_version.sh <version>
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