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We consider the problem of estimating deterministic parameters in models that also

have random parameters. This is often referred to as estimating fixed effects in mixed-

effects models, and the random parameters are called random effects. These models

lead to a direct representation of the joint likelihood of the data and the random effects.

It is often difficult to obtain values of the marginal likelihood, i.e., the integral of the

joint likelihood with respect to the random effects. Nonetheless, the marginal likelihood

is often essential when estimating fixed effects in a mixed-effects model. We present a

pharmacokinetic example to illustrate the importance of marginal likelihood estimates

and their Laplace approximations when applied to mixed-effects models.

KEY WORDS: mixed effects; random effects; Laplace approximation; marginal

likelihood; standard two-stage; prior distribution; nonmem.

1. INTRODUCTION

Often when studying pharmaceutical drugs, measurements are taken from mul-

tiple individuals. In this setting, fixed effects are model parameters that have the

same values for all individuals, and random effects are model parameters that have

independent values for each individual. This separation of the parameters leads nat-

urally to mixed-effects statistical models.

If the random effects were known, we could use their values when estimating the

fixed effects. Unfortunately, the random effects are not known. We only have a model

for their distribution, which is represented by the joint likelihood, i.e., the likelihood
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of both the random effects and the measurement values. The marginal likelihood is

the result of integrating the joint likelihood with respect to the random effects. It is

the uncertainty of the values of the random effects that makes the marginal likelihood

better than the joint likelihood when used as a criteria for estimating the fixed effects.

We demonstrate the power of marginal likelihood estimation for a particular phar-

macokinetic example. We then show how to generalize this example. In our example,

there are two fixed effects, one random effect per individual and one measurement per

individual. Thus, the total number of fixed and random effects is 2 greater than the

number of measurements. Estimating the fixed and random effects by optimizing the

joint likelihood for this example corresponds to solving an under-determined problem

by including prior information about the random effects. We show that optimizing

the marginal likelihood yields a much better estimate.

Our specific example is a special case of a general Gaussian mixed-effects model

with two levels of random variation. The two levels refer to between-individual and

within-individual random variation, i.e., the random effects and the measurement

noise. In this general setting, the marginal likelihood is expressed as an integral and

can be very difficult to calculate. In this case, we suggest replacing the integral by a

Laplace approximation, which is a more tractable calculation.

The standard two-stage procedure separates the estimation of the random and

fixed effects into two stages. During the first stage, the fact that the individuals are

related to each other is ignored, and the random effects are estimated separately for

each individual. During the second stage, the estimated values for random effects are

treated as if they were data, and the fixed effects are estimated. In Section 4..1, we

present the result of the standard two-stage method for our particular example. The

corresponding estimate of the fixed effects is biased, and the bias does not reduce as

the number of individuals increases.

It is tempting to simultaneously optimize the joint likelihood with respect to both

the fixed and random effects. This optimization skips the integration step in the defi-

nition of the marginal likelihood and therefore is easier to implement. This procedure

is often justified on the basis of adding prior information about the random effects

in order to estimate an under-determined system. We show that the corresponding

estimate of the fixed effects may not even exist; i.e., there will be no minimizer of the

joint likelihood that makes sense as an estimate of the fixed effects.

Our notation is similar to that in Section 4.2 of Davidian and Giltinan [1]. We
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make many references to this book because it contains supporting information in

a similar notation and not because it is the original source of the corresponding

results. Other discussions of general Gaussian mixed-effects models can be found

near Eq. (7.4.6) of ref. [2] or Eq. (3.9) of ref. [3]. The Laplace approximation for the

marginal likelihood and some of its modifications are discussed in ref. [4]. Estimation

methods corresponding to the Laplace approximation and some of its modifications

are available using the nonmem [5] computer program.

2. GENERAL MODEL

In this section, we present a general Gaussian mixed-effects model with two lev-

els of random variation. A particular choice of model parameters and functions is

the scientific or engineering part of the modeling process. The goal of this choice is

to make the corresponding set of model assumptions a close approximation of the

physical system being modeled. Once chosen, the parameters and functions can be

combined with mathematical analysis and numerical computation to obtain conclu-

sions implied by the model. These conclusions can be tested using experimentation

and the scientific method.

Our notation and model structure are similar to the presentation in Section 4.2 of

ref. [1]. In our notation, there are M individuals and n(i) measurements corresponding

to the ith individual. Fixed effects are parameters that have the same value for all

individuals. For example, the average over the population of the elimination rate of a

drug is a fixed effect. Random effects are parameters that have an independent value

for each individual. For example, the difference between the average elimination rate

and the elimination rate for a particular individual is the value of a random effect for

that individual. The true, but unknown, fixed effects are the elements of the vector

α∗. The true, but unknown, random effects for the ith individual are the elements

of the vector b∗i . Random effects are sometimes referred to as the inter-individual or

between-individual variation (see Eq. (4.14) of ref. [1]).

The measurement vector corresponding to the ith individual is denoted by yi. The

measurement noise corresponding to the ith individual is denoted by ei. This noise

is sometimes referred to as the intra-individual or within-individual variation (see

Eq. (4.13) of ref. [1]). The model for the mean of yi is denoted by a function fi. This

function depends on both the fixed and the random effects. The model for the value

3



of yi is

yi = fi(α
∗, b∗i ) + ei (1)

This model is the same as Eq. (4.2) of ref. [1] with the following exceptions: The

arguments to the function fi are the fixed and random effects instead of intermediate

parameters. Known values, such as measurement time, have been included in the def-

inition of fi. (In Eqs. (4.12) and (4.1) of ref. [1], intermediate parameters are denoted

by βi, and known values such as measurement time are referred to as covariates and

denoted by xi,j.)

The model for the covariance of the random effects is denoted by the function D.

This function is a mapping from the fixed effects into the space of real symmetric

positive definite matrices. It models the covariance of b∗i prior to knowing the mea-

surement sequence (yi)
M
i=1. The model for the covariance of the measurement noise

for the ith individual is denoted by the function Ri. This function is a mapping

from the fixed effects and random effects into the space of real symmetric positive

definite matrices. It models the covariance of ei given the value of b∗i . Our statistical

assumptions are that the random vectors (ei)
M
i=1, (b∗i )

M
i=1 are mutually independent

and that

ei ∼ N[0, Ri(α
∗, b∗i )]

b∗i ∼ N[0,D(α∗)]

These statistical assumptions are the same as those in Eqs. (4.13) and (4.14) of

ref. [1]. Our model is slightly different because we have allowed fi , Ri, and D to be

arbitrary functions of a single vector containing all the fixed effects.

Table I contains the basic building blocks of our Gaussian mixed-effects model.

The other terms in this model are defined using the terms in this table. The space

of positive integers is denoted by Z+, the space of real vectors with n components is

denoted by Rn, the space of n × n real matrices is denoted by Rn×n, and an arrow

points from the domain space to the range space of the corresponding function.

The values α∗, (b∗i )
M
i=1, and (ei)

M
i=1 are unknown. For the purposes of this paper,

the rest of the information in Table I is known. In this paper, we consider methods

for estimating α∗ from this known information. Deciding to use a mixed-effects model

with a particular choice of parameters and corresponding functions is a model-building

activity and is not covered in this paper.
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Table I:

M ∈ Z+ number of individuals
q ∈ Z+ number of fixed effects
k ∈ Z+ number of random effects per individual
n(i) ∈ Z+ number of measurements for ith individual
α∗ ∈ Rq fixed effects
b∗i ∈ Rk random effects for ith individual
yi ∈ Rn(i) measurement vector for ith individual
ei ∈ Rn(i) noise vector for ith individual
fi : Rq × Rk → Rn(i) model for expected value of yi given b∗i
Ri : Rq × Rk → Rn(i)×n(i) model for covariance of yi given b∗i
D : Rq → Rk×k model for covariance of b∗i prior to knowing yi

3. LAPLACE APPROXIMATION

In this section, we present the marginal likelihood and its Laplace approximation

for our general model. Define

K = kM

N = n(1) + . . . + n(M)

We use the notation

L : Rq × RK × RN → R

to denote the joint negative log-likelihood corresponding to a parameter value α, a

random-effects sequence (bi)
M
i=1, and a data sequence (yi)

M
i=1. The notation b ∈ RK

and y ∈ RN is connected to the notation (bi)
M
i=1 and (yi)

M
i=1 by

b = (bT
1 , · · · , bT

M)T

y = (yT
1 , · · · , yT

M)T

Given the statistical assumptions above, and the density function for a Gaussian

distribution (see Theorem 2.3.1 of ref. [6]), we obtain

L(α, b; y) =
1

2

M∑

i=1

log det [2πRi(α, bi)]

+
1

2

M∑

i=1

[yi − fi(α, bi)]
T

Ri(α, bi)
−1 [yi − fi(α, bi)]

+
1

2

M∑

i=1

log det [2πD(α)] +
1

2

M∑

i=1

bT
i D(α)−1bi (2)

Note that exp[−L(α, b∗; y)] is the joint probability density for the combination of a

data sequence (yi)
M
i=1 and a random-effects sequence (b∗i )

M
i=1. We use p : RN ×Rq → R
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to denote the probability density for the data sequence (yi)
M
i=1 prior to knowing the

value of the random-effects sequence (b∗i )
M
i=1. This probability density equals the

marginal density of (yi)
M
i=1 and is given in Eq. (4.20) of ref. [1], Section 2.2.2 of

ref. [6], or Eq. (3.1) of ref. [3] as

p(y;α) =
∫ +∞

−∞
exp[−L(α, b; y)]db (3)

We say the model has first-order random effects if the following conditions hold:

∂
(i)
b Ri(α, bi) = 0 for i = 1, . . . ,M, and all α, bi

∂
(i)
b ∂

(i)
b fi(α, bi) = 0 for i = 1, . . . ,M, and all α, bi (4)

where ∂
(i)
b denotes the partial derivative with respect to bi. These conditions are

equivalent to R(α, bi) being constant with respect to bi and changes in f(α, bi) being

linear with respect to changes in bi. If the model has first-order random effects, the

integral in Eq. (3) can be evaluated analytically (see pages 83–85 of ref. [1]). The

example defined in Section 4. satisfies this condition.

Evaluating the integral in Eq. (3) can be difficult. One approach is to replace the

integral by a Laplace approximation. The resulting approximate density p̃ has the

same domain space and range space as p and is given in Sections 4.2 and 4.6 of ref. [7]

as

p̃(y;α) = det
[
∂2

b L(α, b̂(α); y)/(2π)
]−1/2

exp
[
−L(α, b̂(α); y)

]
(5)

where b̂ : Rq → RK is defined by

b̂(α) = argmin L(α, b; y) with respect to b (6)

The value b̂(α) is the mode of b∗ given y where α∗ has been replaced by an approxi-

mation denoted by α. On page 170 of ref. [1], this estimate of b∗ is referred to as the

empirical Bayes estimate. It is sometimes referred to as the maximum a posteriori

(MAP) Bayesian estimate to distinguish it from the expected value of b∗ given y. The

dependence of b̂ on α is explicit while its dependence on y is suppressed because it

is not needed in our presentation. The Laplace marginal likelihood estimate of α∗ is

the value of α that maximizes p̃(y;α).

4. EXAMPLE MODEL

Our example is a one-compartment model. We chose this model because it is

simple and has been used in pharmacokinetic applications (see Figure 2-2 of ref. [8]).
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In addition, we make some assumptions about our knowledge of the system to simplify

the mathematical analysis.

We take one concentration measurement for each individual and we scale our units

so that the measurement is taken when time equals 1. Thus, the time interval from

the injection to the measurement is the same for all individuals. In addition, we

use Bi to denote the amount of drug injected into the ith individual at time zero,

which also equals the volume of distribution for that individual. Thus, the initial

concentration is 1 for all individuals. Our goal is to estimate the expected value and

variance of the rate at which the drug is leaving the system. Note that we take only

one measurement per individual and our goal is to estimate two fixed effects. Figure

1 is a diagram of our model:

@�

Bi

&%
'$

ci(t)

�
�
�

izi

?
β∗

i

Fig. 1. Model diagram.

Here, i is the index for the individual, Bi is the amount of drug injected, ci(t) is the

concentration of drug in plasma at time t, zi is a single measurement of the drug

concentration, and β∗
i is the true, but unknown, transfer rate from the plasma to

the outside world. Because the initial concentration equals 1, the solution of the

corresponding differential equation is

ci(t) = exp(−β∗
i t)

For the purposes of our example, the concentration measurements are log normally

distributed in the following manner:

zi = exp(−β∗
i ti) exp(−ei)

where ti = 1 is the time of the measurement for the ith individual and

ei ∼ N(0, 1)
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Note that in terms of the measurements (zi)
M
i=1, the errors in our model are multi-

plicative. Taking the log of both sides, we obtain the equation

log(zi) = −β∗
i ti − ei = −β∗

i − ei

because ti = 1 for all i. We make the following correspondence between this particular

example and our general model:

q = 2 , α∗
1 = expected value of β∗

i prior to yi , fi(α, bi) = α1 + bi

k = 1 , α∗
2 = variance of β∗

i prior to yi , Ri(α, bi) = 1
n(i) = 1 , b∗i = β∗

i − α∗
1 , D(α) = α2

yi = − log(zi)

Using this correspondence, Eq. (1) becomes

yi = α∗
1 + b∗i + ei (7)

As per our general model assumptions, the random variables (ei)
M
i=1 and (b∗i )

M
i=1 are

independent. It follows directly from Eq. (7) that the random variables (yi)
M
i=1 are

independent. In addition, the distribution of yi, prior to knowing the value of b∗i , is

given by

yi ∼ N(α∗
1, α

∗
2 + 1) (8)

It follows that the expected value of the sample variance of yi satisfies the equation

E





yi −

1

M

M∑

j=1

yj




2

 =

M − 1

M
(α∗

2 + 1) (9)

Note that the sample variance corresponds to the actual variance, α∗
2 + 1, with a

correction factor for the degrees of freedom (see the discussion below Theorem 3.3.2

of ref. [6]).

4..1 Standard Two-Stage Estimation

In the standard two-stage procedure, the parameter estimate for each individual is

calculated independently, and then the sample variance of that estimate is used as an

estimate of the variance of the random effects. This procedure is widely used because

it is the simplest way to estimate fixed effects in a mixed-effects model. Section 5.3.1

of ref. [1] describes the the standard two-stage procedure in further detail. In this

section, we apply the standard two-stage procedure to the example in Section 4.. To

be specific, we define

β∗
i = α∗

1 + b∗i
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and then we define the estimate βS
i of β∗

i as the minimizer of the negative log-likelihood

of the probability density for yi corresponding to a value for β∗
i . For our particular

example,

yi = β∗
i + ei

βS
i = argmin

1

2
log(2π) +

1

2
(yi − βi)

2 with respect to βi

It follows that βS
i = yi. The fixed effect α∗

1 is the expected value of β∗
i prior to

knowing the value of yi. The standard two-stage estimate for α∗
1 is

αS
1 =

1

M

M∑

i=1

βS
i =

1

M

M∑

i=1

yi

The fixed effect α∗
2 is the variance of β∗

i . The standard two-stage estimate for α∗
2 is

αS
2 =

1

M − 1

M∑

i=1

(βS
i − αS

1 )2 =
1

M − 1

M∑

i=1


yi −

1

M

M∑

j=1

yj




2

It follows from Eq. (9) that the expected value of αS
2 is α∗

2 + 1. Thus, αS
2 a poor

estimate of α∗
2 unless α∗

2 is large relative to 1.

4..2 Joint Likelihood

It is tempting to consider the random effects to be additional parameters, with

a prior distribution specified by D, and to estimate the fixed and random effects by

optimizing the joint likelihood. The joint likelihood is the probability density for a

value of the measurement sequence (yi)
M
i=1 and the random-effects sequence (b∗i )

M
i=1.

The general case for the negative log of this likelihood is given by L in Eq. (2). In this

section, we obtain formulas for L and its derivatives that correspond to the particular

example presented in Section 4..

The joint negative log-likelihood function corresponding our particular example is

the function L : R2 × RM × RM → R, given by

L(α, b; y) =
M

2
log(2π) +

1

2

M∑

i=1

(yi − α1 − bi)
2 +

M

2
log(2πα2) +

1

2α2

M∑

i=1

b2
i

We use ∂
(i)
b and ∂(i)

α to denote the partial with respect to the ith component of b and

α, respectively. Expressions for some partial derivatives of L are listed below so that

they can be derived from the equation above. They will be used later in the text:

∂
(i)
b L(α, b; y) = bi(1 + 1/α2) + α1 − yi (10)
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∂(1)
α L(α, b; y) =

M∑

i=1

(α1 + bi − yi) (11)

∂(2)
α L(α, b; y) =

M

2α2
− 1

2α2
2

M∑

i=1

b2
i (12)

It follows from Eq. (10) that ∂
(i)
b ∂

(j)
b L is zero whenever i 6= j. Thus,

∂2
b L(α, b; y) = (1 + 1/α2)IM (13)

where IM is the M ×M identity matrix.

4..3 Joint Likelihood Estimation

In this section, we consider estimating the fixed effects in our particular example

by optimizing the joint likelihood, i.e., by solving the problem

minimize L(α, b; y) with respect to (α, b) (14)

The function b̂ is defined by Eq. (6). Combining Eq. (10) with the first-order necessary

condition for a minimum of L(α, b; y) with respect to b, we obtain

0 = ∂bL(α, b̂(α); y) (15)

b̂i(α) =
yi − α1

1 + 1/α2
(16)

We define αJ to be the estimate of α∗ that solves the problem

minimize L(α, b̂(α); y) with respect to α (17)

It follows that the pair (αJ , b̂(αJ)) solves Problem 14. If we could solve Problem 17,

the solution would satisfy the first-order necessary conditions

0 = ∂αL(αJ , b̂(αJ ); y) + ∂bL(αJ , b̂(αJ ); y)∂αb̂(αJ )

= ∂αL(αJ , b̂(αJ ); y) (18)

Note that the second equality above follows from Eq. (15). Using Eq. (11) and the

∂(1)
α component of the equation above, we conclude that

0 =
M∑

i=1

αJ
1 + bi(α

J ) − yi =
M∑

i=1

αJ
1 − yi

αJ
2 + 1

αJ
1 =

1

M

M∑

i=1

yi (19)
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Using Eq. (12) and the ∂(2)
α component of Eq. (18), we conclude that

0 =
M

2αJ
2

− 1

2(αJ
2 )2

M∑

i=1

b̂i(α
J )2 = M − 1

αJ
2

M∑

i=1

(
yi − αJ

1

1 + 1/αJ
2

)2

1

M

M∑

i=1

(yi − αJ
1 )2 = αJ

2 (1 + 1/αJ
2 )2 = αJ

2 + 2 + 1/αJ
2 (20)

Only positive values of αJ
2 make sense because it is an estimate of α∗

2, which is a

variance. In addition, the right-hand side of Eq. (20) is always greater than 4 (for

positive values of αJ
2 ). Using Eqs. (9) and (19), we conclude that

E
[
(yi − αJ

1 )2
]

= (1 − 1/M)(α∗
2 + 1)

Thus, by the law of large numbers, if α∗
2 < 3, the probability that there is a value

of αJ
2 that satisfies Eq. (20) goes to zero as M goes to infinity. In other words, it is

unlikely that there is a solution to either Problem 14 or Problem 17.

4..4 Marginal Likelihood Estimation

Our particular example has first-order random effects; i.e., the conditions in Eq. (4)

hold. It follows from Lemma 2 in the appendix that

− log[p̃(y;α)] =
1

2

M∑

i=1

log det[2πVi(α)] + [yi − fi(α, 0)]T Vi(α)−1[yi − fi(α, 0)]

where Vi(α) = 1+α2. We used the general definition of Vi in Eq. (A1) and the specific

definitions of Ri, fi and D for our example (see Section 4.). Further simplifying using

the specific forms for fi and Vi(α), we obtain

− log[p̃(y;α)] =
M

2
log[2π(1 + α2)] +

1

2(1 + α2)

M∑

i=1

(yi − α1)
2 (21)

Note that, by Eq. (8) and the independence of the random variables (yi)
M
i=1, the

right hand side of Eq. (21) is the likelihood of (yi)
M
i=1 prior to any knowledge of the

sequence (b∗i )
M
i=1. The Laplace marginal likelihood estimate α̂ for α∗ is the value of α

that maximizes p̃(y;α). It follows from simple calculus (or Theorem 3.2.1 of ref. [6])

that

α̂1 =
1

M

M∑

i=1

yi

α̂2 + 1 =
1

M

M∑

i=1

(yi − α̂1)
2
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5. CONCLUSION

For our example, all three of the methods presented above have the same estimate

for α∗
1:

αS
1 = αJ

1 = α̂1 =
1

M

M∑

j=1

yj

The standard two-stage estimate for α∗
2 is given by

αS
2 =

1

M − 1

M∑

i=1


yi −

1

M

M∑

j=1

yj




2

The expected value of this estimate is given by

E[αS
2 ] = α∗

2 + 1

The marginal likelihood estimate for α∗
2 is given by

α̂2 = −1 +
1

M

M∑

i=1


yi −

1

M

M∑

j=1

yj




2

The expected value of this estimate is given by

E[α̂2] = α∗
2 − α∗

2/M

In addition, we showed that the joint likelihood estimate αJ
2 will often not even

exist when α∗
2 is less than 3. We note that as the number of individuals increases, the

absolute bias |α∗
2−E[α̂2]| decreases. On the other hand, the absolute bias |α∗

2−E[αS
2 ]|

is independent of the number of individuals.

Our analysis of the example demonstrates that the Laplace marginal likelihood

estimate is superior to the standard two-stage and joint likelihood estimates. The

standard two-stage estimate αS
2 is biased because it does not account for the difference

between the estimate βS
i and the true value β∗

i . The Global Two Stage method defined

in Section 5.3.2 of ref. [1] uses an approximation for

E
[
(βS

i − β∗
i )(β

S
i − β∗

i )
T
]

(22)

to account for this difference. This approximation is exact and this variance is con-

stant with respect to b for our example because it has first-order random effects; i.e.,

the conditions in Eq. (4) hold. In general nonlinear cases, the Global Two Stage

approximation for Expression (22) is not constant with respect to b̂(α), and the cor-

responding method becomes an iterative procedure. This procedure can be very slow
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and may not even converge because the change in the approximation is not accounted

for when deciding how to change the current value of α. The EM method defined in

Section 5.3.2 of ref. [1] and the Lindstrom Bates method defined in Section 6.3.2 of

ref. [1] may be slow to converge for similar reasons. One intuitive way to view these

methods is that the total derivative with respect to α of the expression

det
[
∂2

b L(α, b̂(α); y)/(2π)
]−1/2

(23)

is not computed before deciding how to change α. (This expression is part of the

formula for p̃(α; y) in Eq. (5).) Not computing this total derivative makes these

methods easier to implement, but they are slower to converge, and sometimes even

fail to converge, for general nonlinear cases. The first-order objective in Eq. (6.5) of

ref. [1] replaces the expression above with

det
[
∂2

b L(α, 0; y)/(2π)
]−1/2

and also approximates fi as linear with respect to bi and Ri as constant with respect to

bi. (These approximations are exact when the model has first-order random effects.)

Thus, it also does not take the total derivative of the expression in Eq. (23) into

account during its optimization procedure.

Formulas that account for the total derivative of the expression in Eq. (23) are

available in ref. [4]. Estimation procedures that account for these derivatives are

available using the nonmem [5] computer program.

APPENDIX

In this appendix, we consider the general model defined in Section 2. and do not

restrict our attention to the example presented in Section 4.. We show that the results

in Section 4..4 hold for any model that has first-order random effects, i.e., when the

conditions in Eq. (4) hold.

The following lemma can be proven using the argument on page 83 of ref. [1]:

Lemma 1 Suppose that B ∈ Rk×k, R ∈ RK×K , F ∈ RK×k, and w ∈ RK where B

and R are symmetric and positive definite. Define h : Rk → R by

h(x) =
1

2
log det(2πR) +

1

2
log det(2πB)

+
1

2
xTB−1x +

1

2
(w − Fx)TR−1(w − Fx)

It follows that
∫ +∞

−∞
exp[−h(x)]dx = exp

[
−1

2
log det(2πV ) − 1

2
wT V −1w

]
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where V = FBF T + R.

Suppose that we have a general model as defined in Section 2. for which the

conditions in Eq. (4) hold. We can use Eq. (1) to conclude that

yi = fi(α
∗, 0) + ∂

(i)
b fi(α

∗, 0)b∗i + ei

We define Vi : Rq → Rn(i)×n(i) by

Vi(α) = Ri(α, 0) + ∂
(i)
b fi(α, 0)D(α)∂

(i)
b fi(α, 0)T (A1)

It follows that the distribution of yi, prior to any knowledge of b∗i , is

yi ∼ N [fi(α, 0), Vi(α)] (A2)

Equation (A2) corresponds to the result in Eq. (8) for the arbitrary case of a model

with first-order random effects.

The following lemma establishes that, for models with first-order random effects,

the Laplace approximation for the marginal likelihood equals the likelihood of an

independent sequence (yi)
M
i=1 with distribution given by Eq. (A2).

Lemma 2 We are given a model of the form defined in Section 2. that satisfies the

first-order random-effects conditions defined in Eq. (4). The Laplace approximation,

p̃(y;α), defined by Eq. (5) satisfies the following equations:

p̃(y;α) = p(y;α)

− log[p̃(y;α)] =
1

2

M∑

i=1

log det[2πVi(α)] + [yi − fi(α, 0)]TVi(α)−1[yi − fi(α, 0)]

where p(y;α) is given by Eq. (3) and Vi(α) is given by Eq. (A1).

Proof: The first-order random-effects conditions in Eq. (4) imply that L(α, b; y) is

quadratic with respect to b. It follows that the marginal density p equals its Laplace

approximation p̃; i.e., the first assertion of the lemma is true (see Section 4.6 of

ref. [7]).

It follows from Eqs. (2) and (3) that

p(y;α) =
∫ +∞

−∞
exp[−L(α, b; y)]db

=
M∏

i=1

∫ +∞

−∞
exp[−Li(α, bi; y)]dbi
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where

Li(α, bi; y) =
1

2
log det [2πRi(α, bi)] +

1

2
log det [2πD(α)] +

1

2
bT
i D(α)−1bi

+
1

2
[yi − fi(α, bi)]

T
Ri(α, bi)

−1 [yi − fi(α, bi)]

The conclusion of this lemma now follows from a direct application of Lemma 1 with

w = yi − fi(α, 0) , F = ∂
(i)
b fi(α, 0) , x = bi , R = Ri(α, 0) , B = D(α)

Note that we have used the first-order random-effects conditions to make the replace-

ments:

fi(α, bi) = fi(α, 0) + ∂
(i)
b fi(α, 0)bi

Ri(α, bi) = Ri(α, 0)
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Fig. 1. Model diagram.
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