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Abstract. We analyze the asymptotic properties of estimators based on optimizing an extended

least squares objective function. This corresponds to maximum likelihood estimation when the

measurements are normally distributed. These estimators are used in models where there are

unknown parameters in both the mean and variance of measurements. Our approach is based on

the analysis of optimization estimators. We prove consistency and asymptotic normality under

the general conditions of independent, but not necessarily identically distributed, measurement

data. Asymptotic covariance formulas are derived for the cases where the data are both normally

and arbitrarily distributed.
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1 Introduction

In this paper we consider the asymptotic properties of estimators based on optimizing an extended least

squares (ELS) objective function. Such estimators arise naturally in the method of the maximum likelihood

and its variants. Our approach is based on the analysis of optimization estimators used by White (1994).

Consistency and asymptotic normality are proved under general conditions of independent but not identically

distributed measurement data. Formulas for the asymptotic covariance are derived for the cases where the

data are both normally and arbitrarily distributed. The study is motivated by a class of nonlinear regression

problems where there are unknown parameters in both the mean and variance models; see Beal and Sheiner

(1988). Optimization estimators minimize an objective function that depends on random measurement data.

Maximum likelihood (ML) estimators are a well known example in this class. The asymptotic properties
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of optimization estimators have been studied under a variety of conditions. Huber (1967) considered the

independent and identically distributed measurement case and defined the class of M-estimators. Ljung

and Caines, on the other hand, studied the dependent measurement case (Caines, 1988). Gallant (1987)

considered general optimization estimators for both independent and dependent measurement data. Our

approach uses the machinery developed by White (1994) for general optimization estimators. The ELS

objective function, LN (θ, y), is defined by

qj(θ, yj) = (1/2) [yj − Sj(θ)]TVj(θ)−1[yj − Sj(θ)] + (1/2) log detVj(θ) (1)

LN (θ, y) =
N∑
j=1

qj(θ, yj) , (2)

where y = (y1, y2, . . .) is a sequence of independent but not identically distributed measured column vectors,

θ is a column vector belonging to a compact set Θ, and Sj and Vj are smooth functions defined on Θ. The

value Sj(θ) has the same dimension as yj , and the value Vj(θ) is a positive definite matrix with the same

number of rows as yj . An ELS estimator is any minimizer of the ELS objective with respect to θ ∈ Θ.

The dimension of yj may vary with j, which enables us to include the class of problems occurring with

repeated measurement data; see Vonesh and Chinchilli (1997) or Davidian and Giltinan (1995). If there is

an unknown parameter value θ0 ∈ Θ such that yj is normally distributed with mean Sj(θ0) and variance

Vj(θ0) for all j, then, up to an additive constant, LN (θ, y) is the negative log likelihood of (y1, . . . , yN ).

In this case, under general hypotheses, it has been shown that the maximum likelihood estimate of θ0 is

consistent and asymptotically normal. See, for example, Hoadley (1971) or Philippou and Roussas (1975).

In this paper, we do not make the normality assumption on yj . We show, under general hypotheses, that

the ELS estimator is still consistent and asymptotically normal. However, in this more general setting, the

point θ0 must satisfy a further identifiability condition. Our proof of consistency is similar to the consistency

proof given by Bell, Burke, and Schumitzky (1996). Our proof of asymptotic normality follows the general

template of White (1994). The special case where each yj is a scalar, θ ≡ (x, u), and V (θ) ≡ V (S(x), u) is

considered by Bell and Schumitzky (1997), where an extension of the Gauss-Newton method that minimizes

LN (θ, y) with respect to θ is presented. A final remark is of note. Hoadley (1971) and Philippou and

Roussas (1975) established consistency and asymptotic normality for ML estimators in the general setting

of independent but not identically distributed random measurement data. The methods of proof of these

two works were general enough to actually include estimators based on objective functions other than the

likelihood function, namely the optimization estimators. In a technical report, Beal (1984) defined the class
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of ELS problems and used the method of Hoadley (1971) to derive asymptotic properties of ELS estimators.

Our approach is closer to the method of Philippou and Roussas (1975). When the objective function is

suitably smooth it appears that this method is considerably simpler than that of Hoadley. A brief outline of

the paper follows: In Sections 2 and 3 we define the basic notation and assumptions of the paper. In Section

4, we state the main theorems of consistency and asymptotic normality. We also state the formula for the

asymptotic covariance. Proofs are given in Sections 5, 6, 7, and 8.
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2 Notation

LN (θ, y) extended least squares objective function (see Equation (2))

qj(θ, yj) jth term in the objective function (see Equation (1))

θ0 true, but unknown, value for the parameter vector

θ̂N the value of θ that minimizes LN (θ, y), more precicely written θ̂N (ω)

Θ compact subset of finite dimensional Euclidean space

yj the jth measurement vector, more precisel written yj(ω)

Sj(θ) model for the mean of yj

Vj(θ) model for the variance of yj

|u| square root of the sum of the squares of the elements of u

E[g] expected value of g(ω) with respect to ω ∈ Ω

uT transpose of u

Ω set of points in the probability space

ω an element of the probability space

B the sigma field of measurable sets of Ω

P the probability measure on Ω

∂h(θ) the derivative of h with respect to θ

∂2h(θ) the second derivative of h with respect to θ

∂kh(θ) the derivative of h with respect to the k−th element of θ

‖f(θ)‖ maximuim of |f(θ)| with respect to θ ∈ Θ

Σfj the sum from j = 1 to j = N of fj

uN → u0 the sequence {uN} converges to u0 as N →∞

sqrt(x) square root of the value x

3 Assumptions

1. The elements of the sequence {yj} are independent random column vectors defined on the complete

probability space (Ω, B, P ) and there is a constant M such that for all j,

E[|yj |6] ≤M .
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2. The column vector valued functions {Sj(θ)} and the positive definite matrix valued functions {Vj(θ)}

are three times continuously differentiable on the compact space Θ such that there is a θ0 ∈ Θ with

E[yj ] = Sj(θ0) and V ar[yj ] = Vj(θ0). In addition there is a constant M such that for i = 0, 1, 2 and

for all j ∥∥∂iSj(θ)∥∥ ≤M,
∥∥∂iVj(θ)∥∥ ≤M, and

∥∥Vj(θ)−1
∥∥ ≤M .

3. There is a function L(θ) defined on Θ such that

‖L(θ)− (1/N)E[LN (θ, y)]‖ → 0 .

In addition, θ0 is in the interior of Θ, and it is the unique minimizer of L(θ) on Θ.

4. There is a matrix valued function C(θ) defined on Θ such that

∥∥C(θ)− (1/N)E[∂2LN (θ, y)]
∥∥→ 0 .

In addition, C(θ0) is positive definite.

5. There is a positive definite matrix D such that

(1/N)E[∂LN (θ0, y)T∂LN (θ0, y)]→ D .

Given these assumptions it is shown by White (1994, Theorem 2.12) that there exists a measurable function

θ̂N (ω) such that

LN [θ̂N (ω), y(ω)] = min
θ∈Θ

LN [θ, y(ω)] . (3)

Under very general conditions, we prove that for almost all ω, θ̂N (ω) converges to θ0 and that the sequence

sqrt(N)( θ̂N (ω)− θ0) is asymptotically normal. The crux of our proofs is based on a uniform version of the

strong law of large numbers. If all of the yj are normally distributed, then LN (θ, y) is the negative log

likelihood function of the data (up to an additive constant). In this case, θ̂N is the maximum likelihood

estimate of θ0 given the data (y1, . . . , yN ). In this paper we do not assume normality, but we do point out

special results for that case.

4 Consistency and Asymptotic Normality

In this section we state our main results. The proofs are given in Sections 5, 6, 7, and 8. The first theorem

provides motivation for assuming that θ0 is the unique minimizer of L(θ). The second theorem establishes
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that the estimates converge to the true parameter value. The third theorem establishes the asymptotic

normality of the estimates. The last theorem provides a formula for calculating the covariance of the

estimates.

Theorem 1. If Assumption 2 is satisfied,

E[LN (θ0, y)] = min
θ∈Θ

E[LN (θ, y)] .

Theorem 2. Suppose all the assumptions hold and θ̂N is defined by Equation (3). It follows that for almost

all ω

θ̂N (ω)→ θ0 .

Theorem 3. Suppose all the assumptions hold and θ̂N is defined by equation 3. It follows that the random

column vector sqrt(N)[ θ̂N (ω)− θ0] converges in distribution to a normal random column vector with mean

zero and covariance

C(θ0)−1DC(θ0)−1 .

In addition, if each yj is normally distributed, D = C(θ0).

Theorem 4. E[∂m∂kLN (θ0, y)] is equal to

Σ∂mSj(θ0)TVj(θ0)−1∂kSj(θ0) + (1/2) trace[Vj(θ0)−1∂mVj(θ0)Vj(θ0)−1∂kVj(θ0)] .

Remark 1. The result in Theorem 4 is known in the case where the elements of {yj} are scalar-valued

measurements (Beal and Sheiner (1988), Section 2.6). It is less well known in the vector valued measure-

ment case (Vonesh and Chinchilli (1997), Equation 9.2.24). We must approximate C(θ0) by evaluating the

expressions for E[∂k∂mLN (θ0, y)] with θ0 replaced by θ̂N because θ0 is unknown. This is justified by that

fact that E[∂k∂mLN (θ, y)] is continuous and θ̂N → θ0.
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5 Proof of Theorem 1

Lemma 5. Suppose u0 is a column vector of length n and U0 is an n×n symmetric positive definite matrix.

For each column vector u and positive definite matrix U define

H(u, U) = trace[U−1U0] + log det(U) + (u− u0)TU−1(u− u0) .

The function H(u, U) has a unique minimum at (u, U) = (u0, U0).

Proof. Given a positive definite U , it follows that U−1 is positive definite and

min
u
H(u, U) = H(u0, U) = trace[U−1U0] + log det(U) .

Thus it suffices to show that U0 minimizes H(u0, U) with respect to U . Let F (U) be the logarithm of the

determinant of U and let • denote the Frobenious inner product of matrices, i.e., the sum of the element-

by-element product. It follows that F (U) is concave, its derivative is U−1, and

F (U0) ≤ F (U) + U−1 • (U0 − U) = F (U) + trace[U−1(U0 −U)]

log det(U0) ≤ log det(U) + trace[U−1(U0 −U)] = log det(U) + trace[U−1U0]− n

H(u0, U0) ≤ H(u0, U) .

Lemma 6. Suppose that u is a random column vector with mean u0 and variance U0, and w is a constant

column vector. It follows that

E[(u− w)(u− w)T ] = U0 + (u0 − w)(u0 − w)T .

Proof. (u− w)(u− w)T is equal to

(u− u0)(u− u0)T + (u0 − w)(u− u0)T + (u− u0)(u0 − w)T + (u0 − w)(u0 − w)T .

Taking the expected value of the expression above we obtain the conclusion of this lemma.

Lemma 7. If Assumption 2 is satisfied, the argument θ0 minimizes E[qj(θ, yj)] subject to θ ∈ Θ.
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Proof. Define Fj(θ) = E[2qj(θ, yj)] which is equal to

E{[yj − Sj(θ)]TVj(θ)−1[yj − Sj(θ)] + log detVj(θ)}

= traceE{Vj(θ)−1[yj − Sj(θ)][yj − Sj(θ)]T}+ log det Vj(θ) .

Applying Lemma 6 and the fact that trace(AB) is equal to trace(BA), we obtain

Fj(θ)− log detVj(θ) = trace[Vj(θ)−1{Vj(θ0)−1 + [Sj(θ0)− Sj(θ)][Sj(θ0)− Sj(θ)]T}]

= trace[Vj(θ)−1Vj(θ0)−1] + [Sj(θ0)− Sj(θ)]TVj(θ)−1[Sj(θ0)− Sj(θ)] .

It now follows from Lemma 5 that θ0 minimizes Fj(θ), which completes the proof of this lemma. It follows

from Lemma 7 that θ0 minimizes each of the terms in the summation (1/2) ΣE[qj(θ, yj)], which is equal to

E[LN (θ0, y)]. Thus θ0 minimizes E[LN (θ0, y)] with respect to θ ∈ Θ. This completes the proof of Theorem 1.

Remark 2. Theorem 1 provides motivation for the statement that θ0 minimizes L(θ) in Assumption 3. In

addition, if the set of equations Sj(θ) = Sj(θ0) and Vj(θ) = Vj(θ0) for j = 1, . . . , N has the unique solution

θ = θ0 , then θ0 is the only minimizer of E[LN (θ, y)].

6 Proof of Theorem 2

Definition. Given a sequence of matrix valued functions {fj(θ, ω)}, each of which is defined on Θ× Ω, let

hN (θ, ω) = (1/N)Σ{fj(θ, ω)− E[fj(θ, ω)]} .

The sequence {fj(θ, ω)} satisfies the pointwise strong law of large numbers if for each θ ∈ Θ and almost all

ω ∈ Ω, |hN (θ, ω)| → 0. The sequence {fj(θ, ω)} satisfies the uniform strong law of large numbers if for almost

all ω ∈ Ω, ‖hN (θ, ω)‖ → 0. Note that if a function does not depend on θ, the pointwise and uniform strong

laws of large numbers are equivalent for the sequence. The following lemma is a special case of Andrews

(1992, Theorem 3):

Lemma 8. Suppose Θ is a compact subset of a real vector space, the sequence of Borel measurable vector

valued functions {fj(θ, ω)} and scalar valued functions {Bj(ω)} satisfy the pointwise strong law of large

numbers, and there is constant M such that for each θ1, θ2 ∈ Θ and almost all ω ∈ Ω and all j we have

E[Bj(ω)] ≤M , and

|fj(θ1, ω)− fj(θ2, ω)| ≤ Bj(ω)|θ1 − θ2| .

8



It follows that the sequence of functions {fj(θ, ω)} satisfies the uniform strong law of large numbers.

Proof. Replacing the index t by the index j and the random variable Zt(ω) by ω in the statement of

Andrews (1992, Theorem 3 Part b) and noting that for all N

(1/N) ΣE[Bj(ω)] ≤M ,

we obtain the conclusion of this lemma.

Lemma 9. Suppose that {zj(ω)} is a sequence of independent random variables, that the elements of

{fj(θ, zj)} are Borel measurable column vector valued functions, that the elements of {Bj(zj)} are Borel

measurable scalar valued functions, and that for each θ,

E[|fj(θ, zj)|2] ≤M, and E[Bj(zj)2] ≤M .

In addition, suppose there is a constant M such that for all θ1, θ2 ∈ Θ and almost all ω ∈ Ω

|fj(θ1, zj)− fj(θ2, zj)| ≤ Bj(zj)|θ1 − θ2| .

It follows that the sequence of functions {fj(θ, zj)} satisfies the uniform strong law of large numbers.

Proof. It follows from Chung (1968, Theorem 3.3.1) that the sequence {Bj(zj)} is independent because the

sequence {zj} is independent and {Bj(zj)} are Borel measurable functions. This sequence of functions is

uncorrelated and according to Chung (1968, Theorem 5.1.2), for almost all ω, {Bj(zj)} satisfies the pointwise

strong law of large numbers. In a similar fashion, for a fixed θ and almost all ω, {fj(θ, zj)} satisfies the

pointwise strong law of large numbers. By partitioning Ω into

Ω = {ω ∈ Ω : Bj [zj(ω)] ≤ 1} ∪ {ω ∈ Ω : Bj [zj(ω)] > 1} ,

we conclude

E[Bj(zj)] ≤ 1 + E[Bj(zj)2] ≤ 1 +M .

The conclusion of the lemma now follows from the previous lemma.

Lemma 10. Suppose that {zj} is a sequence of independent column vector valued random variables, {gj(θ)}

is a sequence of column vector valued continuously differentiable function on the compact space Θ (such that

the vectors zj and gj(θ) have the same length), and there is a constant M such that for all j and all θ ∈ Θ,
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E[|zj |2] ≤M , |gj(θ)| ≤M , and |∂gj(θ)| ≤M . If fj(θ, zj) is defined to be (zj)T gj(θ), the sequence {fj(θ, zj)}

satisfies the uniform strong law of large numbers.

Proof. We prove this lemma by verifying the conditions of the previous lemma. The first condition follows

from

E[|fj(θ, zj)|2] = E[|(zj)T gj(θ)|2] ≤ E[|zj |2]|gj(θ)|2 ≤M3 .

For the second condition we define Bj(zj) to be |zj |M and obtain

E[Bj(zj)2] = E[|zj |2M2] ≤M3 .

The third condition is obtained as follows

|fj(θ1, zj)− fj(θ2, zj)| = |zTj (gj(θ1)− gj(θ2))| ≤ |zj | ‖∂gj(θ)‖ |θ1 − θ2| ≤ Bj(zj)|θ1 − θ2| .

Note that we have used the fact that |∂gj(θ)| is greater than or equal to the operator norm of ∂gj(θ). This

completes the proof of this lemma.

Lemma 11. If all the assumptions hold and {qj(θ, yj)} is defined by Equation (1), then {qj(θ, yj)},

{∂qj(θ, yj)∂qj(θ, yj)T }, and {∂2qj(θ, yj)} satisfy the uniform strong law of large numbers.

Proof. We show that the lemma is true for the sequence of functions {qj(θ, yj)}. The other sequences have

very similar proofs but involve more calculations.

qj(θ, yj) = (1/2) yTj Vj(θ)
−1yj − yTj Vj(θ)−1Sj(θ) + (1/2)Sj(θ)TVj(θ)−1Sj(θ) + log detVj(θ) .

Define the functions fj(θ), gj(θ, yj), and hj(θ, yj) by

fj(θ) = (1/2)Sj(θ)TVj(θ)−1Sj(θ) + log detVj(θ)

gj(θ, yj) = yTj Vj(θ)
−1Sj(θ)

hj(θ, yj) = (1/2) yTj Vj(θ)
−1yj .

The assumptions ensure that the sequences {fj(θ)} and {gj(θ, yj)} satisfy the conditions of the previous

lemma (with zj ≡ 1 and zj = yj respectively). Thus it suffices to show that the sequence {hj(θ, yj)}

also satisfies the conditions of the previous lemma to complete this proof. This follows from the following

equalities:

hj(θ, yj) = (1/2) yTj Vj(θ)
−1yj = (1/2) (yTj ⊗ yTj )vec[Vj(θ)−1] ,
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where ⊗ is the Kronker product and vec[Vj(θ)−1] is the column vector consisting of the first row of

Vj(θ)−1followed by its second row and so on. In addition

E(|yTj ⊗ yTj |2) ≤ E(n|yj |4) ≤ n[1 + E(|yj |6)] ≤ n (M + 1) ,

where n is the number of elements in the column vector yj . Thus the sequence {hj(θ, yj)} also satisfies the

conditions of the previous lemma.

Lemma 12. If all the assumptions hold, for almost all ω ∈ Ω, the sequences {LN (θ, y)} and {∂2LN (θ, y)}

satisfy the uniform strong law of large numbers.

Proof. This follows directly from the previous lemma and the definition of LN (θ, y) in Equation (2).

Assumption 3 and the Lemma 12 imply that

‖(1/N) ΣLN (θ, y)− (1/N)E[LN (θ, y)]‖ → 0, and ‖L(θ)− (1/N)E[LN (θ, y)]‖ → 0

and that θ0 is the unique minimizer of L(θ) on Θ. Uniform convergence implies epi-convergence (Wets

(1980), Theorem 4) Thus, for almost all ω ∈ Ω, the minimizers of LN (θ, y)→ θ0. This completes the proof

of Theorem 2.

7 Proof of Theorem 3

The following lemma is a special case of Chung’s (1968) Theorem 7.1.2.

Lemma 13. Suppose that {zj(ω)} is a sequence of scalar valued mean zero independent random variables

and define

bN = sqrt(ΣE[z2
j ]), SN = b−1

N Σzj, and ΓN = b−3
N ΣE[|zj|3] .

If ΓN → 0, SN converges in distribution to a normal random variable with mean zero and variance one.

Lemma 14. Suppose that {zj(ω)} is a sequence of scalar valued mean zero independent random variables

and there is an α > 0 and an M such that

(1/N) ΣE[z2
j ]→ α, and E[|zj |3] ≤M for all j .
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It follows that sqrt(1/N)Σzj converges in distribution to a normal random variable with mean zero and

variance α.

Proof. Let bN , SN , and ΓN be as in the previous lemma. For N sufficiently large, (1/N)ΣE(z2
j ) ≥ (α/2)

and

ΓN = b−3
N ΣE(|zj |3) ≤ [ΣE(z2

j )]−3/2[ΣE([|zj |3)] ≤ (
2
Nα

)3/2NM .

Thus ΓN → 0, the previous lemma applies, and SN converges in distribution to a normal random variable

with mean zero and variance one. From the assumptions of this lemma bN sqrt(N) → sqrt(α). Thus by

the corollary below Theorem 4.4.6 in Chung (1968), the sequence {(bNSN/sqrt(N)} converges to a normal

random variable with mean zero and variance α. Substituting the definition of bN and SN completes the

proof of this lemma.

Lemma 15. If all the assumptions are satisfied, the sequence {sqrt(1/N)∂LN(θ0, y)T} converges in distri-

bution to a normal random column vector with mean zero and covariance D.

Proof. Using that fact that ∂k log det[Vj(θ)] is equal to trace[Vj(θ)−1∂kVj(θ)] and ∂kVj(θ)−1 is equal to

Vj(θ)−1∂kVj(θ)Vj(θ)−1, it follows from Equation (1) that
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∂kqj(θ, yj) = −[yj − Sj(θ)]TVj(θ)−1∂kSj(θ) + (1/2) trace[Vj(θ)−1∂kVj(θ)]

− (1/2) [yj − Sj(θ)]TVj(θ)−1∂kVj(θ)Vj(θ)−1[yj − Sj(θ)] .

Using the fact that a scalar is equal to its trace and that the trace of AB is equal to the trace of BA, we

conclude that

∂kqj(θ, yj) = −[yj − Sj(θ)]TVj(θ)−1∂kSj(θ) (4)

− (1/2)trace
(
Vj(θ)−1∂kVj(θ)Vj(θ)−1{[yj − Sj(θ)][yj − Sj(θ)]T − Vj(θ)}

)
.

Substituting θ0 for θ and taking the expected value, we obtain E[∂kqj(θ0, yj)] = 0. We need to prove the

central limit theorem for the column vector valued functions {∂qj(θ0, yj)T }. We do this by defining the inner

product with a fixed deterministic direction h as zj = ∂qj(θ0, yj) h. The elements of {zj} are the mean zero

independent random variables. In addition,

(1/N) ΣE[z2
j ] = (1/N)E[Σz2

j ] = (1/N)E[(Σzj)(Σzj)]

= (1/N)E[(Σ∂qj(θ0, yj)h)T (Σ∂qj(θ0, yj)h)]

= (1/N)hTE[∂LN (θ0, y)T∂LN (θ0, y)]h ,

which by Assumption 5 converges to hTDh. From the definition of zj we have

E[|zj |3] = E[|∂qj(θ0, yj)h|3] .

From the equation above for ∂kqj(θ, yj), the fact that Sj(θ), Vj(θ)−1, ∂kSj(θ), and ∂kVj(θ) are uniformly

bounded (Assumption 2), and the fact that E[|yj |6] is uniformly bounded (Assumption 1), there is a con-

stant M such that E[|zj |3] ≤ M for all j. (Note that ∂kqj(θ, yj) contains second order terms in yj ; hence

|∂qj(θ0, yj)h|3 contains sixth order terms in yj .) Therefore the previous lemma applies and sqrt(1/N)Σzj

converges in distribution to a normal random variable with mean zero and variance hTDh. The conclusion

of this lemma now follows from the observation that Σzj is equal to ∂LN (θ0, y)h and the fact that h was

arbitrary. The following result is a special case of Theorem 6 in White (1994).

Lemma 16. Suppose (Ω, B, P ) is a complete probability, Θ is a compact subset of Rn, θ0 is in the interior

of Θ, and QN (θ, ω) is twice continuously differentiable in θ for almost all ω. Define θ̂N (ω) to be a minimizer
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of QN (θ, ω) with respect to θ, and suppose that for almost all ω, θ̂N (ω) → θ0 and there is a deterministic

positive definite matrix B such that

B−1/2sqrt(N)∂QN(θ0, ω)T

converges to a normal random column vector with mean zero and variance equal to the identity. In addition

there is a continuous matrix valued function A(θ),

∥∥∂2QN (θ, ω)−A(θ)
∥∥→ 0

for almost all ω where A(θ0) is positive definite. It follows that

sqrt(N)[θ̂N(ω)− θ0]

converges in distribution to a normal random column vector with mean zero and variance equal to A(θ0)−1BA(θ0)−1.

We are now ready to complete the proof of Theorem 3 by applying the lemma above with the following iden-

tifications:

QN (θ, ω) = (1/N)LN [θ, y(ω)], A(θ) = C(θ), and B = D .

Note that by the previous lemma

B−1/2sqrt(N)∂QN(θ0, ω) = D−1/2sqrt(1/N)∂LN(θ0, ω)

converges to a normal random column vector with mean zero and variance equal to the identity. In addition,

by Lemma 12 and Assumption 4 for almost all ω,

(1/N)
∥∥∂2LN (θ, y)− E[∂2LN (θ, y)]

∥∥→ 0 and
∥∥(1/N)E[∂2LN (θ, y)]− C(θ)

∥∥→ 0 .

It follows that ∥∥(1/N) ∂2LN (θ, y)− C(θ)
∥∥→ 0; i.e.,

∥∥∂2QN (θ, ω)−A(θ)
∥∥→ 0 .

By the previous lemma sqrt(N)[θ̂N(ω)−θ0] converges in distribution to a normal random column vector with

mean zero and variance equal to

A(θ0)−1BA(θ0)−1 = C(θ0)−1DC(θ0)−1 ,

which is the first conclusion in Theorem 3. The function LN (θ, z) is a constant plus the negative log-likelihood

of {z1, · · · , zN} under the assumption that each zj is normally distributed with mean Sj(θ) and variance

14



Vj(θ). Hence there is a fixed constant K independent of θ such that∫
exp[−LN (θ, z)]dz1 · · · dzN = K .

Taking the second partial derivative of both sides with respect to θ and passing the derivative under the

integral sign, we obtain∫
[∂2LN (θ, z)− ∂LN (θ, z)T∂LN (θ, z)] exp[−LN (θ, z)]dz1 · · · dzN = 0 .

The interchange of differentiation and integration is valid because Sj(θ), Vj(θ) and Vj(θ)−1 and their first

and second derivatives are uniformly bounded by Assumption 2 (note that this implies that the minimum

eigenvalue of Vj(θ)−1is bounded below and hence the exponential term dominates in the integral). Splitting

the integral and substituting θ0 for θ, we obtain∫
∂2LN (θ0, z) exp[−LN (θ0, z)]dz =

∫
∂LN (θ0, z)T∂LN (θ0, z) exp[−LN (θ0, z)]dz ,

where dz denotes dz1, . . . , dzN . If each yj is normally distributed, the term on the left is E[∂2LN (θ0, y)]

and the term on the right is E
[
∂LN (θ0, y)T∂LN (θ0, y)

]
. This completes the proof of the second part of

Theorem 3.

8 Proof of Theorem 4

By Equation (5) it follows that

∂kqj(θ, yj) = −rj(θ)TVj(θ)−1∂kSj(θ)− (1/2) trace{Wjk(θ)[rj(θ)rj(θ)T −Vj(θ)]} ,

where

rj(θ) = [yj − Sj(θ)], and Wjk(θ) = Vj(θ)−1∂kVj(θ)Vj(θ)−1 .

It follows that

∂m∂kqj(θ, yj) = +∂mSj(θ)TVj(θ)−1∂kSj(θ)− rj(θ)T∂m[Vj(θ)−1∂kSj(θ)]

− (1/2) trace{∂mWjk(θ)[rj(θ)rj(θ)T −Vj(θ)]}

+ (1/2) trace{Wjk(θ)[∂mSj(θ)rj(θ)T + rj(θ)∂mSj(θ)T + ∂mVj(θ)]}

15



because ∂mrj(θ) = −∂mSj(θ). It follows that the expected value E[∂m∂kqj(θ0, yj)] is

∂mSj(θ0)TVj(θ0)−1∂kSj(θ0) + (1/2) trace[Wjk(θ0)∂mVj(θ0)]

= ∂mSj(θ0)TVj(θ0)−1∂kSj(θ0) + (1/2) trace[Vj(θ0)−1∂mVj(θ0)Vj(θ0)−1∂kVj(θ0)]

because E[rj(θ0)] is equal to zero and E[rj(θ0)rj(θ0)T ] is equal to Vj(θ0). The conclusion of the theorem

follows from the formula

LN (θ0, y) = Σqj(θ, yj) .
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