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Abstract. Modeling the mean of a random variable as a function of unknown

parameters leads to a nonlinear least-squares objective function. The Gauss-Newton

method reduces nonlinear least-squares problems to a sequence of linear least-squares

problems and requires only first-order information about the model functions. In a

more general heteroscedastic setting, there are also unknown parameters in a model

for the variance. This leads to an objective function that is no longer a sum of squares.

We present an extension of the Gauss-Newton method that minimizes this objective

function by reducing the problem to a sequence of linear least-squares problems and

requires only first-order information. This represents a new result because other

methods that reduce this problem to a sequence of linear least-squares problems do

not necessarily converge.
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1. Introduction

1.1. Background. Heteroscedastic models often have a variance component

that changes in a systematic way. One approach to such models is to maximize a

quasi-likelihood of a transformation of the data [12]. Another approach is to model

the variance as a function of the mean of the data; for example, see [9]. It is often

important to fit the mean and the variance simultaneously [7]. We present a new

algorithm that does this together with a proof of its convergence. We also present

the asymptotic statistics for the corresponding estimator. A formal statement of our

model is contained in the assumption below.

Assumption 1.1. We are given an open set X ⊆ Rn, a compact convex set C

⊂ X, an open set T ⊆ R, and an open set U ⊆ Rm. For j = 1, . . . , N we are

also given independent samples yj and the twice continuously differentiable functions

Sj : X → T and Vj : T×U → R, such that for unknown values x ∈ C and u ∈ U ,

Sj(x) is the mean of yj and Vj(Sj(x), u) is the variance of yj. Define LN : X×U → R

by

LN(x, u) =
1

2

N∑
j=1

log [Vj(Sj(x), u)] +
(yj − Sj(x))2

Vj(Sj(x), u)
.

We assume there is a twice continuously differentiable function ûN : X → U such

that Vj(Sj(x), ûN(x)) > 0 and ûN(x) is a minimizer of LN(x, u) with respect to u.

Remark 1.1. If the sequence of random variables {yj} is normally distributed,

LN(x, u) is the negative log-likelihood minus (N / 2) log(2π). The function LN(x, u) is

very similar to the objective in [5, Eq. 3.1]. In this paper we present an algorithm that

estimates x and u by minimizing LN(x, u). This estimation procedure is consistent

and asymptotically normal.

Our algorithm uses the derivatives of Vj and Sj to reduce the problem of minimizing

LN(x, u) to a sequence of linear least-squares subproblems. The iteratively reweighted

least-squares method presented in [6, p. 30] or [11, p. 399] estimates x and u by

a similar reduction but there is no proof of its convergence (see Counter Example

2.3). The nonlinear extension of the Newton-Raphson method presented in [10] also

reduces the problem to a sequence of linear least-squares problems (provided the

approximating function is convex).

In addition, our algorithm assumes that given a value of x, it is easy to calculate

the minimizer with respect to the variance parameters, i.e., ûN(x). Minimizing the

variance parameters is a form of Bender’s decomposition and has been considered

for a similar problem in [13]. We prove convergence of our algorithm by showing it
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is a special case of the algorithm presented in [2]. This proof should extend to the

method presented in [10] provided that a line search is included and the approximating

function is convex.
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1.4 Notation.

yj The j-th data value
Sj(x) Model for the mean value of yj

X Domain for the function Sj

C The constraint set for the parameters in the model for the mean
Vj(s, u) Model for the variance of yj

T × U Domain for the function Vj

x True but unknown value for the mean parameters
u True but unknown value for the variance parameters
LN(x, u) Negative loglikelihood corresponding to N data points
ûN(x) Value that minimizes LN(x, u) with respect to u
G(x) The minimum of LN(x, u) with respect to u, i.e., LN(x, ûN(x))
A(x, h) An approximation for G(x + h) near h = 0
ej The residual in the j-th data value, i.e., yj − Sj(x)
σj The standard deviation of ej, i.e., the square root of Vj(Sj(x), u)
Rp The real vector space with p components
zT The transpose z
E[z] The expected value of z
‖f(z)‖Z The maximum of |f(z)| with respect to z ∈ Z
f (k)(z) The k-th derivative of f(z)
∂hA(x, h) partial derivative of A(x, h) with respect to h
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2. Examples

2.0. A Biological example. In the example in Section 2.1 of Davidian and

Giltian the concentration of indomethacin in plasma was measured at eleven time

points following an injection of the drug. The data for the 5th subject is included

below and comes from Table 2.1 of Davidian and Glitian [??].

tj (hours) yj (concentration) tj (hours) yj (concentration)
0.25 2.05 3.00 0.13
0.50 1.04 4.00 0.11
0.75 0.81 5.00 0.08
1.00 0.39 6.00 0.10
1.25 0.30 8.00 0.06
2.00 0.23

The model for the mean of the data

Sj(x) = exp(x1) exp(− exp(x2)tj) + exp(x3) exp(− exp(x4)tj)

Ordinary least squares (OLS) models the variance as Vj(Sj(x), u) = u where u is a

scalar. The corresponding estimates and standard errors of the estimates (SE) are

estimate SE
x1 +1.27 .082
x2 +1.04 .147
x3 −1.23 .491
x4 −1.51 .642

The standard errors are the square root of the diagonal element of the covariance

matrix which can be approximated using the formula for D in Theorem 4.1 with x

and u replaced by their estimated values. These values agree with those in Table

2.2 of [??]. As mentioned in [??], it appears that the variance model should be

Vj(Sj(x), u) = u2Sj(x)2. The corresponding estimates and standard errors for the

extended least squares method (ELS) are

estimate SE
x1 +1.19 .234
x2 +0.94 .159
x3 −1.44 .210
x4 −1.76 .229

The iteratively reweighted least squares estimates (called GLS in Table 2.2 of [??])

are

estimate SE
x2 +1.21 .24
x3 +0.95 .16
x3 −1.45 .21
x4 −1.74 .24

5



Note that the result for ELS and GLS are very similar. Example 2.2 and Remark

3.1 continue the comparison between these two methods.

2.1. Multiple data sets. Suppose that the odd indices correspond to one data

set and the even indices to another data set, and Vj(s, u) is equal to u1 if j is odd

and u2 if j is even. In this case, when N is even,

LN(x, u) =
N

4
log(u1) +

1

2u1

N / 2∑
j=1

(y2j−1 − S2j−1(x))2

+
N

4
log(u2) +

1

2u2

N / 2∑
j=1

(y2j − S2j(x))2 .

This is the objective function for the two-data-set case of the multiple-data-set prob-

lem considered in [2]. Note that given x, we can determine the corresponding value

of ûN(x) that minimizes LN(x, u). If û1,N(x) and û2,N(x) denote the first and second

components of ûN(x),

û1,N(x) =
2

N

N / 2∑
j=1

(y2j−1 − S2j−1(x))2

û2,N(x) =
2

N

N / 2∑
j=1

(y2j − S2j(x))2 .

The assumption that Vj(Sj(x), ûN(x)) > 0 is equivalent to neither û1,N(x) nor û2,N(x)

being zero; i.e., no value of x fits all the data in one of the measurement sets perfectly.

2.2. Model-dependent variances. Suppose that Vj(s, u) is equal to u s. In this

case,

LN(x, u) =
1

2

N∑
j=1

log(uSj(x)) +
(yj − Sj(x))2

uSj(x)
.

Note that given x, we can determine the corresponding value ûN(x), which minimizes

LN(x, u):

ûN(x) =
1

N

N∑
j=1

(yj − Sj(x))2

Sj(x)
.

The condition that Vj(Sj(x), ûN(x)) > 0 is true if neither ûN(x) nor Sj(x) is zero;

i.e., no value of x fits all the data perfectly and Sj(x) > 0 for j = 1, . . . , N and for

all x ∈ X.

Counter Example 2.3. The iteratively reweighted least-squares method for esti-

mating x and u is described in [6, p. 30] and [11, p. 399]. In this section we present a

simple example where this method does not converge. Convergence of our method is
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guaranteed by Theorem 3.2. In addition, the actual iterates for our method are listed

at the end of this section. For this example N = 2, and for j = 1, 2 we have

j yj Sj(x) Vj(s, u)
1 2 x s
2 0 x 2− s .

The iteratively reweighted least-squares method for solving this problem estimates x

by fixing the variance, then modifies the variance to correspond to the new value of

x, and iterates until convergence. This method does not converge for this example.

If xk is the current iterate, the next iterate minimizes

(y1 − S1(x))2

V1(S1(xk), u)
+

(y2 − S2(x))2

V2(S2(xk), u)
=

(2− x)2

xk
+

(0− x)2

(2− xk)
.

Taking the derivative of the right-hand side with respect to x and setting it equal to

zero, we obtain the formula for the next iterate xk+1:

0 = 2
(2− xk+1)

xk
(−1) + 2

xk+1

(2− xk)

2

xk
= xk+1

[
1

xk
+

1

(2− xk)

]

xk+1 =
2

xk

xk(2− xk)

xk + 2− xk
= 2− xk .

If x0 is any value in the interval (0, 2) other than 1, this method oscillates and never

gets any closer to the solution. Thus both x0 and 2− x0 are limit points of the

sequence
{
xk
}

generated by the iteratively reweighted least-squares algorithm even

though neither satisfies the first-order condition for a minimum.

If we use the constraint set C = [0.1, 1.9] and the parameters γ = 0.5, µ = 0.01 in

Step 0 with the approximation A(x, h) from Theorem 3.2, the following iterates are

generated by the algorithm in Theorem 3.1.

k xk k xk

0 0.500 5 1.082
1 1.200 6 0.938
2 0.833 7 1.047
3 1.135 8 0.964
4 0.894 9 1.027

3. Algorithm. In this section, we review the algorithm presented in [2], §4]. For

a set C ⊂ Rn we use the notation NC(x) for the normal cone [8, p. 15], which is

defined by

NC(x) = {z : zT (x′ − x) ≤ 0 for all x′ ∈ C} .
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The following theorem is direct consequence of [2, Theorem 3] which is more general

because it allows for G(x) to be minus infinity. The condition 0 ∈ ∇G(x̂) + NC(x̂)

is the first-order necessary condition for a minimum of G(x) subject to x ∈ NC(x̂)

[4, p. 52]. In the special case where x̂ is an interior point of C, this means that the

derivative of G is zero.

Theorem 3.1. Suppose that G : C → R, and G is twice continuously differentiable

on an open set X containing the nonempty compact convex set C ⊂ Rn. Further

suppose that, A : C ×Rn → R is such that A(x, h) is convex with respect to h, the

partial of A with respect to h is continuous on X ×Rn, and for each x ∈ X

G(1)(x) = ∂hA(x, 0) .

If x̂ is a limit point of the sequence
{
xk
}

generated by the algorithm below, then

0 ∈ ∇G(x̂) + NC(x̂).

Step 0: Choose x0 ∈ Rn, γ ∈ (0, 1), and µ ∈ (0, 1). Set k = 0.
Step 1: Set hk equal to a minimizer of A(xk, h)

with respect to h and subject to xk + h ∈ C.
Step 2: λk = 1.

While G(xk + λkhk)−G(xk) > µλk
[
A(xk, hk)− A(xk, 0)

]
do λk = γλk.

Step 3: xk+1 = xk + λkhk.
Step 4: Set k = k + 1 and go to Step 1.

Theorem 3.2. Suppose that Assumption 1.1 holds, define G(x) = LN(x, ûN(x))

and

A(x, h) =
1

2

N∑
j=1

1

Vj(Sj(x), ûN(x))

{
yj − Sj(x)− S

(1)
j (x)h− 0.5

[
1− (yj − Sj(x))2

Vj(Sj(x), ûN(x))

]
∂sVj(Sj(x), ûN(x))

}2

.

If we apply the algorithm in Theorem 3.1 for this G(x) and A(x, h), any limit point

x̂ of the sequence generated by the algorithm satisfies 0 ∈ ∇G(x̂) + NC(x̂).

Remark: The calculation of hk in Step 1 of the algorithm requires the minimization

of A(x, h) with respect to h which, for this definition of A(x, h), is a linear least square

problem. Thus Theorem 3.2 enables us to minimizes the function LN(x, u) (defined

in Assumption 1.1) by solving a sequence of linear least squares problems.
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Proof. We need to demonstrate the assumptions of Theorem 3.1. The function

G(x) is twice continuously differentiable because LN and ûN are. The function A(x, h)

is convex in h because it is the sum of the terms, each of which is the square of a

linear function of h. The partial of A(x, h) with respect to h is given by

∂hA(x, h) = −
N∑

j=1

S
(1)
j (x)

Vj(Sj(x), ûN(x)){
yj − Sj(x)− S

(1)
j (x)h− 0.5

[
1− (yj − Sj(x))2

Vj(Sj(x), ûN(x))

]
∂sVj(Sj(x), ûN(x))

}
.

The continuity of this partial follows directly from assumptions of this theorem. We

complete the proof by demonstrating that

G(1)(x) = ∂hA(x, 0) .

We begin by evaluating the partial of LN(x, u) with respect to x, which is equal to

1

2

N∑
j=1

[
1

Vj(Sj(x), u)
− (yj − Sj(x))2

Vj(Sj(x), u)2

]
∂sVj(Sj(x), u)S

(1)
j (x)− 2(yj − Sj(x))

Vj(Sj(x), u)
S

(1)
j (x) .

Grouping common terms, we obtain

∂xLN(x, u) =
N∑

j=1

{
0.5

[
1− (yj − Sj(x))2

Vj(Sj(x), u)

]
∂sVj(Sj(x), u)− yj + Sj(x)

}
S

(1)
j (x)

Vj(Sj(x), u)
.

Using the formula for the partial of A(x, h) above, we obtain

G(1)(x) = ∂xLN(x, ûN(x)) + ∂uLN(x, ûN(x))û
(1)
N (x)

= ∂xLN(x, ûN(x)) = ∂hA(x, 0) ,

where we have used the fact that the partial of LN(x, u) with respect to u is zero

when u = ûN(x) because ûN(x) minimizes LN(x, u) with respect to u ∈ U and U is

open. This completes the proof.

Remark 3.1. There are two aspects to the algorithm in Theorem 3.2 that are new

for this problem. One is the line search. The other is the inclusion of the term

5

[
1− (yj − Sj(x))2

Vj(Sj(x), ûN(x))

]
∂sVj(Sj(x), ûN(x))

in the objective function for the approximate subproblem. It is interesting to note

that the expected value of [
1− (yj − Sj(x))2

Vj(Sj(x), u)

]
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is zero. This is probably why the iteratively reweighted least-squares method in [6,

p. 30] often converges.

4. Statistics. In the theorems below, the notation ‖Sj(x)‖X denotes the max-

imum of |Sj(x)| with respect to x ∈ X. This notation is extended to functions

other than Sj(x) and to sets other than X. The notation E[LN(x, u)] denotes the

expected value of LN(x, u) with respect to the probability space that the sequence

{yj} is sampled from. This notation is extended to functions other than LN(x, u).

The notation ej denotes yj − Sj(x) and σj denotes the standard deviation of ej; i.e.,

σ2
j = Vj(Sj(x), u). The following theorem is a direct consequence of [2, Theorem 3].

Theorem 4.1. Suppose Assumption 1.1 holds with x in the interior of C and in

addition we have

1. The sequence {yj} are independent normally distributed random vectors defined

a the complete probability space and there is a constant M such that

E
[
|yj|6

]
≤ M

2. The functions {Sj(x)}, {Vj(s, x)} are three times continuously differentiable on

X × U such that E[yj] = Sj(x) and V ar[yj] = Vj(Sj(x), u). In addition there is

a constant M such that for i = 0, 1, 2∥∥∥S(i)
j (x)

∥∥∥
X

≤ M∥∥∥V (i)
j (Sj(x), u)

∥∥∥
X×U

≤ M∥∥∥Vj(Sj(x), u)−1
∥∥∥

X×U
≤ M

3. There is are functions L(x, u) and H(x, u) defined on X × U such that H(x, u)

is positive definite and∥∥∥∥L(x, u)− 1

N
E [LN(x, u)]

∥∥∥∥
X×U

→ 0 as N →∞

∥∥∥∥H(x, u)− 1

N
E
[
L

(2)
N (x, u)

]∥∥∥∥
X×U

→ 0 as N →∞

4. There is a positive definite matrix D such that

1

N
E
[(

L
(1)
N (x, u)

)T (
L

(1)
N (x, u)

)]
→ D as N →∞
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It follows that
√

N

(
xN − x
uN − u

)
converges in distribution to a normal random vec-

tor with mean zero and covariance D−1where

HN(x, u) → D as N →∞

HN(x, u) =
N∑

j=1

1

2σ4
j

(
Dxx(x, u) Dxu(x, u)
DT

xu(x, u) Duu(x, u)

)

Dxx(x, u) = 2
[
σ2

j + ∂sVj(Sj(x), u)2
]
S

(1)
j (x)T S

(1)
j (x)

Dxu(x, u) = ∂sVj(Sj(x), u)S
(1)
j (x)T ∂uVj(Sj(x), u)

Duu(x, u) = ∂uVj(Sj(x), u)T ∂uVj(Sj(x), u)

Proof. Note that the data vector yj is scalar valued and there is compact set that

contains C × û(C) such that (x, u) is in its interior. If one makes the following

identifications

θ = (x, u)

θN = (xN , uN)

Fj(θ) = Sj(x)

Wj(θ) = Vj(Sj(x), u)

then using [2, Theorem 3 and 4] we can conclude that
√

N(θN − θ) converges in

distribution to a normal random vector with mean zero and covariance D−1where

N∑
j=1

F
(1)
j (θ)T F

(1)
j (θ)

Wj(θ)
+

1

2

W
(1)
j (θ)T W

(1)
j (θ)

Wj(θ)2
→ D as N →∞

Subsisting the definitions Wj(θ) = Vj(Sj(x), u) and σj =
√

Vj(Sj(x), u) together with

the relations

F
(1)
j (θ) =

(
S

(1)
j (x), 0

)
W

(1)
j (θ) =

(
∂sVj(Sj(x), u)S

(1)
j (x), ∂uVj(Sj(x), u)

)
we obtain the conclusion of this theorem.

5. Conclusion. We have presented a new algorithm that estimates both variance

and model parameters when scalar measurement values are independent. This raises

the question of how one should estimate the parameters when the measurements

are vector valued and there is covariance between the components of each measure-

ment. Our method reduces the original problem to a sequence of linear least-squares

problems. Another question is how one should choose the norm for the least-squares
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problems so that convergence of the algorithm is accelerated. The extended nonlinear

Newton-Rapson methods use a Hessian that is related to the likelihood function for

their quadratic term.
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