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Abstract

We present a new clustering algorithm for global illumination in
complex environments. The new algorithm extends previous work
on clustering for radiosity to allow for nondiffuse (glossy) reflec-
tors. We represent clusters as points with directional distributions
of outgoing and incoming radiance and importance, and we derive
an error bound for transfers between these clusters. The algorithm
groups input surfaces into a hierarchy of clusters, and then permits
clusters to interact only if the error bound is below an acceptable tol-
erance. We show that the algorithm is asymptotically more efficient
than previous clustering algorithms even when restricted to ideally
diffuse environments. Finally, we demonstrate the performance of
our method on two complex glossy environments.

1 Introduction

Global illumination, the problem of computing an accurate solution
for the illumination of a physical environment, is fundamental to
computer graphics. A great deal of progress has been made on the
special case of this problem known as “radiosity,” in which all sur-
faces in the environment are ideally diffuse. While this assumption
is a reasonable one for certain environments, such as interiors cov-
ered with latex paint, it is overly restrictive for many other situations
that arise commonly in practice. It only takes a single glossy surface
in a scene to violate the assumptions of radiosity.

The more general form of the global illumination problem, also
known as “glossy global illumination,” has considerably higher
complexity. Whereas radiosity is concerned with how light reflect-
ing from every surface point affects light reflecting from all other
points, in glossy global illumination one must consider how light
reflecting in every direction from every surface point affects light
reflecting in all other directions from all other surface points. This
higher dimensionality has made solving global illumination prob-
lems in complex glossy environments much more difficult than in
complex diffuse environments.

In this paper we present a new algorithm for accelerating the simu-
lation of global illumination in complex glossy environments. Our
approach is inspired by recent clustering algorithms for radiosity.
We introduce a new clustering scheme suitable for general glossy
environments and show that this scheme is asymptotically more
efficient than previous clustering algorithms for global illumination.

1.1 Previous Work

In part because of the high dimensionality of glossy global illumi-
nation, Monte Carlo methods [6, 19, 24, 29] have been the most
widely used to date for simulating illumination in complex glossy
scenes. However, Monte Carlo methods suffer from noisy artifacts
and fairly slow convergence. One notable approach toward reduc-
ing these problems has been taken by Ward [36, 37], in which the
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diffuse interreflections, which are more expensive to compute with
Monte Carlo, are sampled coarsely and cached.

A number of finite-element solutions have also been proposed for
glossy global illumination. Immel et al. [18] extended the radiosity
method to nondiffuse environments by uniformly discretizing the
hemisphere of directions above each surface element in order to
represent the directional distribution of reflected light. This uniform
discretization resulted in very large systems of equations even for
small environments. Sillion et al. [32] used spherical harmonics
to represent the directional distributions of reflected light. This
method used progressive radiosity, rather than a full matrix solu-
tion, and was thereby able to simulate more complex environments.
However, progressive radiosity solutions typically simulate only a
few bounces of light in the environment, and fully converged solu-
tions for complex environments were still impractical.

The introduction of hierarchical radiosity [17] and wavelet radios-
ity [14] inspired several different hierarchical and wavelet-based
algorithms for glossy global illumination [4, 8, 25, 28]. Two funda-
mentally different ways to parametrize the radiance function have
been investigated. The “two-point transport” approach represents
radiance as a function of four spatial variables, two on the source
patch and two on the receiver [4, 25, 28]. Each interaction in this
approach involves three patches: a source patch, a reflecting patch,
and a receiver. Another approach represents radiance as a direc-
tional distribution at each point in the scene, using two spatial and
two angular variables [8]. In this “radiance distribution” approach,
each interaction involves only two patches, just like in the diffuse
case.

The method described by Christensen et al. [8] can be thought of as
the wavelet version of Immel’s algorithm [18]: a four-dimensional
wavelet representation is used to represent the spatially- and
angularly-varying radiance distributions across surfaces in the en-
vironment. This representation is adaptive, sparse, and fast to
evaluate. A wavelet decomposition of the transport operator re-
sults in a sparse linear system that can be solved very quickly, and
importance-driven refinement [7, 35] is used to focus the computa-
tion on light transfers that have the greatest impact on the visible
parts of the solution.

These hierarchical and wavelet-based algorithms are the most ef-
ficient to date for computing fully converged accurate simulations
in small glossy environments. However, to obtain even the coars-
est possible solution for p initial surfaces the method of Chris-
tensen et al. requires creating O(p2) pairs of initial interactions at
the outset, while two-point transport methods start by creating O(p3)
initial interactions. Because of the high complexity of the initial
linking stage, no complex scenes have ever been rendered using
these methods. In fact, to the best of our knowledge, the number
of initial surfaces in any of the glossy environments rendered with
hierarchical methods has not exceeded 152 [8].

Recently, several algorithms have been proposed for speeding up
radiosity in complex diffuse environments, using some form of clus-
tering [20, 27, 30, 33, 38]. The most recent of these algorithms [30,
33] have been motivated by efficient algorithms in the field of N-
body simulation [1, 5, 15], the same algorithms that motivated hier-



archical radiosity [17]. In many respects, the most successful clus-
tering algorithm to date is that of Smits, Arvo, and Greenberg [33],
which creates the clusters automatically, uses error bounds to guide
the solution process, and has O(p log p) complexity.

1.2 Overview

In this paper, we describe a new clustering algorithm for accel-
erating glossy global illumination in complex environments. We
extend the algorithm of Christensen et al. [8] in much the same
way as Smits et al. [33] extended the original hierarchical radiosity
algorithm [17]. We also improve the asymptotic complexity of the
new clustering algorithm to O(p), where p is the number of initial
patches in the environment.

On an intuitive level, our algorithm works by representing a cluster
of surfaces as a point source that emits and reflects light according
to some directional distribution. Such an approximation is less
accurate when considering interactions with other clusters that are
nearby, but more accurate with clusters that are far away. By pro-
viding a bound on the error incurred, we can use this approximation
to simplify the calculation of light transfer between clusters.

This approach is similar to the one taken in Greengard’s fast mul-
tipole method [15], which represents the potential field due to a
cluster of point masses by a multipole expansion about its center of
mass. However, there are also several differences between the two
methods, the most important being that in global illumination, the
radiance distributions of the patches in a cluster do not superimpose
linearly because of occlusion.

The idea of representing the light leaving complex geometry by a
single directional distribution is not new. BRDFs are commonly
used to model the reflection of light by complex microfaceted sur-
faces. Also, real light fixtures are specified in a similar way, with
manufacturers providing goniometric diagrams from far-field mea-
surements. Rushmeier et al. [27] used a directional representation of
the reflectance of clusters of small surfaces. Representing clusters
by means of directional distributions was also suggested by Sil-
lion [30]. Part of the novelty of our approach is in providing bounds
on the errors associated with such approximations. These bounds
permit the use of approximations in a controlled fashion, when the
errors are acceptable. Concurrently with this work, a similar ap-
proach has been independently investigated by Sillion et al. [31].
We will compare the two approaches in Section 7.

Our method not only handles glossy reflections; it also performs
asymptotically faster than previous methods, even in diffuse en-
vironments. The applicability of our method to diffuse environ-
ments is not so surprising if one observes that a collection of dif-
fuse surfaces, when considered as a cluster, is likely to have an
overall reflectance that is highly directional. Thus, the directional
distributions that our algorithm uses could be considered a natural
representation for clusters, even in diffuse environments.

The rest of this paper is organized as follows. Section 2 describes
in more detail the clustering method for diffuse environments of
Smits et al. [33], which most closely resembles our own technique.
In Section 3, we derive an importance-weighted bound on the contri-
bution to the image of light transferred between two glossy clusters.
Section 4 describes an algorithm that uses these bounds to compute
a glossy global illumination solution. Section 5 covers the pre- and
postprocessing stages of our algorithm, which are more implemen-
tation dependent. Section 6 discusses the results of our tests and
provides comparisons with other methods. Finally, in Section 7, we
give some conclusions and directions for future work.

2 Clustering for diffuse environments

Algorithms for diffuse global illumination attempt to solve the equa-
tion

L(x) = Le(x) +

Z
fr(x) G(x, y) L(y) dy, (1)

where L is the unknown equilibrium distribution of radiance, Le

is the emitted radiance, and fr(x) is the bidirectional reflectance
distribution function (BRDF) of the surface at x, assumed to be
independent of direction. The remaining part of the kernel, which
only depends on geometry, is

G(x, y) =
cos �x cos �y

kx� yk2
V(x, y),

where �x and �y are the angles between the surface normals and the
line connecting x and y, and V(x, y) is 1 if x and y are mutually visible
and 0 otherwise.

Finite-element methods for solving this equation use a set of basis
functions to represent the unknown radiance function. Once the
influence of each basis function on every other basis function has
been computed, the coefficients of the basis functions are found by
solving a large linear system.

One of the difficulties associated with such methods is the sheer
number of basis functions required to obtain a satisfactory solution
for a typical scene. This problem is addressed in part by the hierar-
chical radiosity (HR) algorithm described by Hanrahan et al. [17].
HR uses a hierarchical set of basis functions, associating a single
basis function with each of the input surfaces at the coarsest level.
One basis function is then allowed to interact with another only if
the error in the interaction falls below a given threshold. In general,
coarse basis functions suffice for long distances and dim interac-
tions, while finer basis functions are required for shorter distances
and brighter interactions.

As pointed out by Smits et al. [33] and others, the main deficiency of
HR is that the coarsest emitters and receivers are the input surfaces
defining the environment. Thus, if p is the number of input surfaces,
HR must begin by computing O(p2) interactions. For complex envi-
ronments the cost of creating these initial links becomes dominant,
and obtaining even the coarsest solution becomes prohibitively ex-
pensive.

A promising approach by Smits et al. [33] to the initial linking
problem of HR is to group input surfaces together into clusters,
thereby obtaining a smaller set of coarser entities to begin with. This
technique extends the HR hierarchy upward toward a single cluster
containing all surfaces. Two clusters R and S can then be linked if
the interaction between them has a low enough error bound. Linking
the two clusters allows the algorithm to avoid having to link all the
input surfaces contained in R to those contained in S.

Note that in HR, m surfaces can be linked to n other surfaces us-
ing mn links. Smits et al. introduced two different types of links
between clusters, �-links and �-links. These links correspond to
two different bounds on an interaction, each of which can be com-
puted in less than O(mn) time, yielding an algorithm of improved
asymptotic complexity.

The �-links transport light between two clusters by first estimating
how much each patch in the source cluster S contributes to the re-
ceiving cluster R, taking into account the orientation of each source
patch with respect to R. The sum of these contributions is then
distributed to each patch in R, taking into account the orientation of
each receiving patch with respect to S. Computing a bound for an �-
link involves two sums: one over the patches in S and another over
the patches in R. The time complexity of computing the error bound
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for an�-link is therefore O(m+n), if S and R contain m and n patches,
respectively. Smits et al. show that linking a hierarchy of clusters
containing p initial patches to a fixed error tolerance using �-links
results in O(p) links with total time and space cost of O(p log p).

An asymptotically lower cost can be achieved using �-links, which
ignore the orientations of the individual patches in each cluster. The
bound on a �-link interaction can be computed in constant time,
provided that each cluster stores the maximum radiance value of the
patches it contains. Bounds on �-links are very coarse, because they
are obtained by assuming that every source patch is directly facing
and visible to every other receiving patch, that every receiving patch
is highly reflective, and that all the patches in one cluster are as close
as possible to the other cluster. Linking an entire hierarchy with p
initial patches to a given tolerance using �-links results in O(p)
links, with only O(p) total cost. However, because �-links have
such crude bounds, Smits et al. use them to represent only the most
negligible interactions between clusters. Most interactions require
the use of �-links, and thus, the total cost of their clustering algo-
rithm is O(p log p).

3 Clustering for glossy environments

Glossy global illumination algorithms attempt to solve a more gen-
eral version of equation (1):

L(x, ~!) = Le(x, ~!) +

Z
fr(~!yx, x, ~!) G(x, y) L(y, ~!yx) dy, (2)

where L(x, ~!) is the radiance leaving point x in direction ~!, and ~!yx

denotes the direction from y to x. The units of radiance are watts per
square meter per steradian [W=m2sr]. The BRDF fr(~!yx, x, ~!) is the
ratio of the radiance reflected from x in direction ~! to the differential
irradiance from the incident direction ~!yx.

One way to extend HR to solve equation (2) is by storing the di-
rectional distribution of radiance leaving each patch [8]. This ap-
proach to glossy global illumination suffers from the same initial
linking problem that plagues HR. In order to apply clustering to
hierarchical glossy global illumination we need to derive a method
for efficiently bounding and approximating the transfer between
clusters containing surfaces with arbitrary BRDFs and directional
radiance distributions.

Smits et al. gave error bounds for the diffuse case using several
norms. In the glossy case it is difficult to produce a useful 1-
norm bound, but in Sections 3.1 and 3.2 we will derive a bound for
the importance-weighted 1-norm. (In fact, Smits et al. suggest that
the 1-norm is more appropriate for computing a global illumination
solution, as it gives an indication of the total “incorrect” energy in
the environment, and assigns weights to surfaces according to their
area.)

In Section 3.3 we introduce a cluster representation that allows
us to bound an interaction between two clusters in constant time.
Each cluster is represented as a point with directional distributions
of outgoing and incoming radiance and importance. Collapsing
clusters into points in this manner produces sufficiently accurate ap-
proximations if the interacting clusters are distant from each other.
The bound can be computed in constant time because it does not
require any knowledge of the geometry inside the clusters; all the
necessary information is encoded in the directional distributions of
the interacting clusters.

The cost of maintaining such a representation with a cluster depends
on its directional resolution, but not on the number of links it has
or on the number of patches it contains. Note that even when a
cluster contains purely diffuse surfaces, it typically reflects different

e x
~!ex

�
e(x, ~!ex)

eye

image

Figure 1 Emitted importance � e(x, ~!).

amounts of light in different directions. Thus, our representation
is appropriate for both glossy and diffuse environments, yielding a
much more accurate approximation in the diffuse case than either �-
links or Sillion’s density volumes [30], both of which treat clusters
as isotropic entities.

We shall refer to an interaction between a pair of clusters with direc-
tional distributions as an 
-link. Because we can compute a bound
for an 
-link in constant space and time, our algorithm requires
only O(p) space and time for a hierarchy of clusters containing p
input patches. Thus, the complexity of our algorithm is an improve-
ment over the O(p log p) complexity of the diffuse-case algorithm of
Smits et al.

3.1 Review of importance

Before we derive error bounds on an interaction between two clus-
ters, we briefly review how importance can be used to measure the
impact of an interaction on the image being created. Weighting
our bounds by importance will enable us to focus on refining the
transfers that contribute the most to the light reflected towards the
eye. As demonstrated by Smits, Arvo, and Salesin [35], importance-
driven refinement can yield very significant speedups in complex
diffuse environments. Importance has also proved very effective in
glossy environments [3, 8].

In earlier work, we introduced a directional variant of importance [7,
8]. Directional importance is defined as a unitless outgoing quantity
that can be transported in exactly the same manner as radiance.
Thus, the transport equation for directional importance is

� (x, ~!) = � e(x, ~!) +

Z
fr(~!yx, x, ~!) G(x, y)� (y, ~!yx) dy. (3)

The only difference between this equation and the transport equation
for radiance (equation (2)) is that directional importance is typically
emitted by the image plane, while radiance is emitted by the light
sources. The emitted directional importance is defined as

�
e(x, ~!ex) =

�
1, if x is a point on the image;
0, otherwise.

See Figure 1 for an illustration of this emission term. Under this
definition of the emitted importance, � (x, ~!) tells us how much of
the light arriving at x from direction�~! ultimately reaches the eye.

Christensen et al. [8] used the transport equation for directional
importance (equation (3)) to derive the amount of power contributed
to the image by a particular interaction. The amount of power that
is transported directly from patch s to patch r and that ultimately
reaches the image is given by

�r,s =

Z
r

Z
s

� (x, ~!xy) G(x, y) L(y, ~!yx) dy dx. (4)

Importance is typically used for view-dependent solutions. If
a view-independent solution is desired, importance � (x, ~!) can
be simply replaced by the directional-hemispherical reflectance
�dh(x, ~!) in the derivations that follow. This reflectance describes
how much of the flux incident at x from direction�~! is reflected to
the rest of the environment [22].
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3.2 Bounding glossy transfer between clusters

We will now extend the error bounds derived by Smits et al. [33]
to incorporate directional radiance and directional importance.
Smits et al. compute an error bound on an interaction by bounding
it from above and below. Any approximation that lies within the
upper and lower bounds clearly has an error less than the difference
between them. Since lower bounds on visibility between clusters
are hard to compute, Smits et al. set the lower bound on interactions
between clusters to zero. As a result, the error bound becomes the
upper bound on the interaction.

Following Smits et al. we denote the maximum value of a function f
over some domain A� B by

dfeA,B = max
x2A, y2B

f (x, y)

Consider first an interaction between two patches, r and s. Replac-
ing the integration over patches r and s in equation (4) with the
product of their areas times an upper bound on the integrand, we
obtain the bound

�r,s � Ar Asd� (x, ~!xy) G(x, y) L(y, ~!yx)er,s

� Ar As

�
� (x, ~!xy)

cos �x cos �y

jjx� yjj2
V(x, y) L(y, ~!yx)

�
r,s

Splitting this upper bound into several parts yields

�r,s � Ar Asd� (x, ~!xy) cos �xer,s

�
1

jjx� yjj2

�
r,s

� dV(x, y)er,sdL(y, ~!yx) cos �yer,s

� Ard� cos �xer,s

1
(dr,s)2

AsdL cos �yer,s

Here the upper bound on visibility V(x, y) is simply set to 1, and dr,s

denotes the minimum distance between the patches r and s.

This bound easily extends to a bound on the transfer between two
clusters R and S. We only need to replace maxima over the areas of
the patches with maxima over the bounding volumes of the clusters,
and sum over the patches in each of the clusters:

�R,S �

 X
r2R

Ard� cos �xer,S

!
1

(dR,S)2

 X
s2S

AsdL cos �yeR,s

!

(5)
The term d� cos �xer,S is the importance (weighted by a cosine) of
a receiving patch r 2 R maximized over all directions towards
cluster S. The term dL cos �yeR,s is the radiance (weighted by a
cosine) of a sending patch s 2 S maximized over all directions
towards cluster R.

3.3 Bounds computable in constant time

We could use the bound in equation (5) as a generalization of the
�-links of Smits et al. [33] to directional radiance and importance.
This bound involves a sum over source patches and a sum over
receiving patches, yielding a clustering algorithm of complexity
O(p log p). We will now describe how storing directional informa-
tion with each cluster can be used to yield bounds that are com-
putable in constant time, leading to a clustering algorithm of com-
plexity O(p).

As mentioned earlier, we would like to treat clusters as point sources
with angular distributions. With this goal in mind, we define a
maximum outgoing radiant intensity distribution I(~!), which gives

an upper bound on the radiant intensity leaving a source cluster S in
direction ~!:

I(~!) =
X
s2S

As max
y2s

�
L(y, ~!) cos �y

�

The units of radiant intensity are watts per steradian [W=sr]. Simi-
larly, we define a maximum outgoing “importance intensity” distri-
bution� (~!), which gives the importance intensity leaving a receiv-
ing cluster R in direction ~!:

�(~!) =
X
r2R

Ar max
x2r

�
� (x, ~!) cos �x

�

Importance intensity has units of projected area [m2]. It follows
from these definitions that if we maximize over directions between
clusters R and S we get the bounds

X
s2S

AsdL cos �yeR,s �
�

I(~!yx)
�

R,S

and X
r2R

Ard� cos �xer,S �
�
�(~!xy)

�
R,S

Finally, substituting the previous two inequalities into equation (5),
we get

�R,S �
�
� (~!xy)

�
R,S

1
(dR,S)2

�
I(~!yx)

�
R,S

(6)

Thus, to estimate a bound on the transfer between R and S we need to
approximate the minimum distance between clusters as well as the
maxima of � (~!xy) and I(~!yx) over the directions between the two
clusters. Note that the time required to perform this computation
will not depend on the number of patches within each of the partic-
ipating clusters if we store a fixed-size precomputed representation
of � (~!) and I(~!) with each cluster.

4 The algorithm

In this section we describe a new clustering algorithm for glossy
global illumination that uses the bounds on intercluster transfers
derived in the previous section. The algorithm is an extension of a
hierarchical algorithm for glossy global illumination that represents
the light in the scene as a function of two spatial and two angular
variables on each surface patch [8].

The algorithm starts by constructing a cluster hierarchy containing
all the initial patches in the environment. Each cluster has several
directional distributions describing its estimated outgoing and in-
coming radiance and importance, upper bounds on the radiance and
importance leaving the cluster in each direction, and internal visibil-
ity in each direction inside its parent (see Section 5.3). The outgoing
cluster distributions are initialized by pulling emitted radiance and
initial importance from the patches towards the root of the cluster
hierarchy. Initially, a single link is established from the root cluster
to itself. The algorithm then alternates between refining the links
and solving the resulting linear system, until reaching some final
tolerance.

This process is summarized in the following pseudocode:
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/* Preprocess: */
Construct cluster hierarchy
Initialize approximate visibility data structures
Pull emitted radiance and importance from patches to clusters
for a series of decreasing tolerances � do

/* Refine: */
for each link ` do

if ErrorBound(`) > � then Refine(`)
end for
/* Solve: */
for k iterations do

Transport radiance and importance along links
Push radiance and importance from clusters to patches
Pull radiance and importance from patches to clusters

end for
end for
/* Render: */
Final gather

In our implementation, the series of refinement tolerances is speci-
fied by the user. The number of iterations k was set to three in all of
the examples shown in Section 6.

In the rest of this section we concentrate on the main components
of this algorithm: the representation of clusters, the refinement
process, and the solution process. In Section 5, we describe the
more implementation-dependent preprocessing and postprocessing
stages of the algorithm, which include hierarchy construction, visi-
bility preprocessing, and rendering. We also comment on the space
and time complexity of each portion of the algorithm, both here and
in Section 5.

4.1 Cluster representation of radiance and importance

In the transfer of radiance and importance between clusters, we
will ignore each cluster’s geometric extent, and treat a cluster as
a point located at the center of its bounding volume. With each
cluster, we store seven directional distributions. In describing these
distributions, we will use r to denote a patch acting as a receiver
and s to denote a patch acting as a source.

The quantities stored with each cluster include:

1. The radiant intensity distribution I(~!), which gives the radiant
intensity [W=sr] leaving the cluster in the direction ~!:

I(~!) =
X

s

Z
s

L(y, ~!) cos �y V(y, ~!) dy,

where V accounts for internal occlusion within the cluster, with
V(y, ~!) equal to 1 if the ray leaving y in direction ~! does not
intersect any of the surfaces inside the cluster and 0 otherwise.
(Section 5.3 describes how this internal visibility is computed.)

2. The directional irradiance distribution Lin(~!), which gives the
flux per projected area [W=m2] arriving at the cluster from direc-
tion ~!.

3. The “importance intensity” distribution � (~!), which gives the
total importance [m2] leaving the cluster in the direction ~!:

� (~!) =
X

r

Z
r

� (x, ~!) cos �x V(x, ~!) dx.

4. The incoming directional importance distribution � in(~!), which
gives the directional importance [sr] arriving at the cluster from
direction ~!.

In order to efficiently bound the transfer between clusters as de-
scribed in Section 3.3, each cluster must also store:

5. The maximum radiant intensity distribution I(~!), which gives an
upper bound on the radiant intensity [W=sr] leaving the point in
the direction ~!:

I(~!) =
X

s

As max
y2s

�
L(y, ~!) cos �y

�

6. The “maximum importance intensity” distribution � (~!), which
gives an upper bound on the total importance [m2] of the con-
tained patches in direction ~!:

�(~!) =
X

r

Ar max
x2r

�
� (x, ~!) cos �x

�

Finally, in order to account for occlusion within clusters when
pulling and pushing (Section 4.4), each cluster also stores:

7. The internal visibility distribution V(~!), which gives the prob-
ability that a ray leaving the cluster in direction ~! will exit the
parent cluster without being occluded. The computation of V(~!)
is described in Section 5.3.

A directional distribution can be approximated using any finite set
of basis functions [b1(~!), : : : , bN(~!)] defined over the sphere. Thus,
each of the distributions described above is represented as an array
of coefficients, with one coefficient for each basis function. For ex-
ample, the outgoing radiant intensity I(~!) is represented as a linear
combination

I(~!) =
NX

i=1

Ii bi(~!).

To simplify transfer computations, the supports of the basis func-
tions should not overlap.

In our implementation we use thirty-two piecewise-constant basis
functions. Each coefficient of a distribution describes the average
magnitude of the represented quantity over the solid angle corre-
sponding to the support of the basis function. For convenience,
we divide the sphere of directions into two hemispheres and use
the same method that we use to parameterize the hemisphere of
directions for a patch [8]. This parameterization transforms the
hemispherical domain to a unit square using a gnomonic projection
followed by a “stretch,” as shown in Figure 2.

Complexity analysis: The storage required for a cluster
is proportional to the number of directional basis functions
used, but does not depend on the number of patches in the
cluster. Each cluster therefore requires a constant amount
of storage, for a fixed directional resolution. Because the
number of clusters depends linearly on the number of input
patches p, the entire cluster hierarchy requires O(p) storage.

4.2 Bounding and refining the transfer

It follows from equation (6) that in order to estimate a bound on
the transfer between two clusters R and S we need to approximate
the minimum distance between the clusters as well as the maxima
of� (~!xy) and I(~!yx). We first check to see if the bounding volumes

unit hemisphere

gnomonic
projection-

disc with radius �=2

radial
“stretch”-

unit square
- u

�
��
v

Figure 2 Angular projection: gnomonic projection and radial “stretch.”
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of the clusters overlap. If this is so, the bound is set to infinity. When
the two clusters do not overlap, we estimate the bound similarly to
Smits et al.: First we randomly choose a fixed number of pairs (x, y),
where x is in the bounding volume of R and y is in the bounding
volume of S. Then for each pair (x, y), we evaluate � (~!xy), I(~!yx),
and kx�yk�2, recording the maximum value for each of these three
quantities. The product of the three maxima is taken as an estimate
of the bound in equation (6).

If the bound corresponding to a link exceeds the current tolerance,
the link is refined. In our implementation, a link between two clus-
ters is refined by splitting the “largest” cluster, linking its children
to the “smaller” cluster, and recursively considering those new links
for refinement. We define the size of a cluster as the sum of the
areas of the patches contained within it. For a link between a patch
and a cluster, the cluster end of the link is always refined. A link
between two patches is refined as described by Christensen et al. [8].
New links that are established in the refinement process will be
used later to transport energy, so an approximate visibility term is
computed and stored with each link when it is created, as described
in Section 5.2.

Another possible type of refinement is to increase the accuracy of
the directional distributions stored with each cluster, rather than
replacing links between two clusters with links between their sub-
clusters. We avoid increasing the angular resolution of directional
distributions in order to maintain constant space requirements for
clusters (and time requirements for updating them). It is important
to emphasize that using a fixed resolution for clusters does not limit
the accuracy of the simulation: so long as the error in each transfer
is bounded, all important and significant transfers will eventually
be refined down to the patches. At this point, the algorithm of
Christensen et al. [8] will resolve these transfers to the required
accuracy.

Complexity analysis: Following Greengard [15], Hanra-
han et al. [17], and Smits et al. [33], we assume that the
number of links from each cluster to other clusters in the
hierarchy is a constant that depends on the current tolerance,
but not on the number of patches p. Because the hierarchy
contains O(p) clusters, there are O(p) cluster-to-cluster links
that can possibly be refined. The time spent in the refinement
stage is therefore O((tb + tv)p), where tb is the time to com-
pute a bound on the transfer between two clusters and tv is
the time to estimate the visibility between the clusters. As
we mentioned earlier, we can bound the transfer in constant
time. In Section 5.2, we describe a particular scheme for
approximating visibility calculations that takes constant time
as well. As a result, each refinement stage requires only O(p)
time. (The corresponding cost in the algorithm described
by Smits et al. is O(p log p), because their �-links cannot be
bounded in constant time.)

4.3 Transfer between clusters

To transfer light along a link from a source cluster S centered at y
to a receiving cluster R centered at x, we need to convert the radiant
intensity leaving y into an incoming quantity arriving at x.

Consider a differential receiving element centered at x. The differ-
ential flux d� arriving at x is given by the product of the radiant
intensity of the source in the direction of the receiver, the visibility
between the source and the receiver, and the solid angle d!x sub-
tended by the receiver (as seen from the source):

d� = I(~!yx) V(x, y) d~!x = I(~!yx) V(x, y)
cos �x dAx

kx� yk2

In order to convert this incoming flux into a quantity that is in-
dependent of the receiver’s area and orientation, we divide by the
projected area cos �x dAx to obtain

d�
cos �x dAx

=
I(~!yx) V(x, y)
kx� yk2

The resulting incoming quantity is similar to irradiance, but has
units of watts per projected area. We refer to it as directional ir-
radiance and denote it by Lin. Thus, if the support of the i-th basis
function contains the direction ~!yx, and the support of the j-th basis
function contains the direction ~!xy, the transfer from cluster S to
cluster R is performed by updating the j-th directional irradiance
coefficient of R as follows:

Lin
j  Lin

j +
Ii VSR

kx� yk2

where the visibility VSR is a fraction between 0 and 1 representing
the average visibility between clusters S and R. Visibility between
clusters is approximated as described in Section 5.2. This approxi-
mation is computed once when the link is established, and the result
is stored with the link.

The transfer of importance from R to S is performed analogously:

�
in
i  �

in
i +

�j VSR

kx� yk2

Complexity analysis: Transporting light and importance
along a link between two clusters takes a constant amount of
time, since all the quantities involved in the updates are stored
with the two clusters and the link between them.

4.4 Pulling and pushing

We use the terms “pull” and “push” in the same sense as in the
hierarchical radiosity algorithm [17], except that pulling begins at
the patch level and combines outgoing quantities to give values to
coarser clusters in the hierarchy, while pushing distributes incoming
quantities from the coarsest cluster down the hierarchy toward the
patches.

When we pull radiant intensity up to a parent cluster from its chil-
dren, we must first convert the outgoing radiance of each child
patch s into a radiant intensity distribution Is:

Is(~!) =

Z
s

L(y, ~!) cos �y dy.

The coefficients Is
i corresponding to the directional basis functions

are obtained by sampling the integrand of this expression at a num-
ber of points y and directions ~!. The parent cluster’s radiant inten-
sity is then given by summing the radiant intensities of its children,
attenuated by any occlusion within the parent:

I parent
i  

X
children

I child
i Vchild

i

The internal visibility coefficients Vi are computed and stored with
each child during a preprocessing stage, as described in Section 5.3.

Upper bounds on radiant intensity are also estimated by sampling
points on the patches. The upper bounds are pulled up the cluster
hierarchy in the same manner as radiant intensities, although they
are not attenuated by internal occlusion.

To push the directional irradiance of a parent cluster to its children,
we attenuate each coefficient Lin

i of the parent by the i-th internal
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visibility coefficient of each child. For a child that is itself a cluster,
we merely add this attenuated value to the child’s i-th directional
irradiance coefficient. For a child that is a patch, however, we
need to convert the directional irradiance of the parent cluster into
radiance reflected off the patch. The radiance reflected from point x
on the patch in direction ~! is given by the following integral over
the hemisphere above x:

L(x, ~!) =

Z
fr(~!

0, x, ~!) V(x, ~!0) cos �0 dLin(~!0),

where �0 is the angle between the incoming direction ~!0 and the
surface normal at x.

In our implementation, the directional irradiance that gets pushed
down to a patch from its parent cluster is only used to update the
coarsest basis function on the patch, which represents the average
radiance of the patch over all locations and directions. In terms of
directional distribution coefficients, this update is accomplished by
increasing the coefficient of the patch’s coarsest basis function by

X
i

�hc(2� ! �~!i)
Lin

i

�~!i
Vi.

Here �hc is the hemispherical-conical reflectance of the patch [22]
and �~!i is the solid angle corresponding to the support of the i-th
basis function on the sphere.

The quantities related to importance are pushed and pulled in ex-
actly the same manner as those related to radiance.

Complexity analysis: Each cluster and each patch in the
environment is updated exactly once per pull. The number
of clusters is proportional to the number of input patches p,
so the total number of updates per pull is O(p). Since internal
visibilities are precomputed, the cost of each update depends
only on the angular resolution of directional distributions,
which is fixed. Therefore, it takes O(p) time to perform a pull.
The argument for a push is completely analogous.

Each “gather” (transport, push, and pull) corresponds to a
single Jacobi iteration. For global illumination problems, the
number of iterations required for the solution to converge
is typically small and independent of the number of input
patches. Thus, the total time to solve the system represented
by a fixed set of links among clusters and patches can be
considered O(p).

4.5 Discussion

Our approach to clustering, like the approach of Smits et al., may
raise certain concerns about the accuracy of the resulting solutions.
In both clustering algorithms, transfers between clusters are approx-
imated very coarsely. Furthermore, refining an interaction between
two clusters by breaking it into several smaller pieces does not in
itself guarantee an improvement in the accuracy of the resulting
approximation: accuracy is increased only if the sum of the errors
corresponding to these pieces is smaller than the error of the original
interaction.

The philosophy behind these two clustering algorithms is that, in a
typical complex environment, many of the transfers between clus-
ters are very small because energy falls off with the square of the
distance. These transfers have little or no impact on the solution, and
even a very coarse approximation would suffice for them; however,
we don’t know a priori which of the transfers can be approximated
in this way. Clustering provides a reliable means of determining
where coarse approximations suffice. Significant transfers, on the

(a) (b)

Figure 3 A cluster with cluster children and patch children: (a) ge-
ometry; (b) schematic view.

other hand, are refined until all such interactions take place between
patches, where transfers are treated more accurately.

5 Preprocessing and postprocessing

In this section, we describe the preprocessing and postprocessing
stages of our method. Section 5.1 describes the particular technique
we use to group input patches into clusters. Sections 5.2 and 5.3 dis-
cuss visibility preprocessing for visibility between clusters and for
internal visibility within clusters, respectively. Finally, Section 5.4
explains how images are rendered from finite-element solutions us-
ing a final gathering pass.

5.1 Creation of the cluster hierarchy

To build the cluster hierarchy we use a top-down approach similar
to that of Fournier and Poulin [9] and Glassner [11]. We start by
creating a single root cluster containing all the initial surfaces in
the scene. We compute the bounding box of the cluster and split it
into eight octants. For each patch in the cluster, one of two things
happens:

1. If the extent of the patch along all of the principal axes is less than
that of an octant, the patch is assigned to the octant containing its
centroid.

2. Otherwise, the patch becomes a direct child of the cluster.

Following the patch classification process, every octant containing
more than a few patches is made into a child cluster. (Patches in
the remaining nearly empty octants become direct children of the
parent cluster.) The above process is repeated recursively on any
newly created clusters. The recursion terminates when the number
of patches in a cluster is sufficiently small.

The above algorithm assigns each patch to a single cluster, without
splitting any of the patches. The construction results in a hierar-
chy of clusters whose bounding boxes may overlap. However, the
bounding box of each child cluster is strictly contained within that
of its parent. The children of a cluster can be smaller clusters as well
as patches, as illustrated in Figure 3.

Complexity analysis: If we assume a relatively uniform
distribution of p patches, the cluster construction described
above will result in a hierarchy with O(log p) levels. At each
level of the hierarchy, the construction has to consider O(p)
patches to distribute them into octants. The construction of
the entire hierarchy therefore takes O(p log p) time. Note
that a similar hierarchy could also be constructed from the
bottom up, by first associating each input patch with a cell
on some fine uniform grid. Then adjacent nonempty cells
could be grouped together into larger cells. This approach
would construct a hierarchy of depth O(log p) in O(p) time.
Our experience has been that the hierarchy construction takes
only a small fraction of the total running time, so we have not
found it necessary to improve the complexity of this stage.
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5.2 Visibility between clusters

Each time the refinement stage described in Section 4.2 creates a
new link, we need to estimate the visibility for that link. If the
refinement stage is to spend only O(p) time on links between clus-
ters, we need to compute visibility in constant time. Unfortunately,
using ray casting with a BSP-tree [10] or a hierarchy of bounding
volumes [12] results in an expected cost of O(log p) per ray. More
sophisticated acceleration schemes for ray tracing, such as the ray
classification scheme proposed by Arvo and Kirk [2], or the ray co-
herence scheme of Ohta and Maekawa [23], reportedly exhibit near-
constant expected time per ray, but these schemes are nontrivial to
implement.

In our current implementation, we adopt a simple approximate vis-
ibility scheme that is based on the isotropic volume density ap-
proximation described by Sillion [30]. As a preprocessing step, we
construct a uniform voxel grid of some fixed resolution over the
scene’s bounding box. The resolution of the grid is specified as a
parameter to our method, and it does not depend on the number of
objects in the scene. Each voxel in the grid is assigned a density
(extinction coefficient) � proportional to the total area of the patches
the voxel contains.

Once the densities of the voxels have been assigned, the visibility
between any two points x and y can be approximated by casting a
ray from x to y and visiting each voxel intersected by the ray. The
attenuation of the ray traveling a distance d through a voxel is given
by e��d. The visibility of the entire ray is approximated by the
product of the attenuations inside each voxel. The average visibility
for a link between clusters is estimated by tracing a fixed number of
rays, as described above, and averaging their values.

For average visibility between a pair of patches, we need greater
accuracy than the isotropic volume density approximation can pro-
vide. In this case, we use the conventional approach of shooting a
fixed number of rays between the two patches, and intersecting each
ray with the occluding geometry.

Complexity analysis: Assigning densities to voxels in the
preprocessing stage involves computing the fraction of each
patch’s area that lies within each voxel. This can be accom-
plished in O(p) time.

The estimation of average visibility for each new cluster-
to-cluster or cluster-to-patch link takes constant time: since
the total number of voxels is fixed, even the longest ray
through the environment can intersect at most a fixed number
of voxels.

5.3 Visibility within clusters

The pulling and pushing operations described in Section 4.4 redis-
tribute quantities from a cluster to its children and vice versa. To
account for internal occlusion within a cluster, we need to know the
fraction of radiance leaving each child of the cluster that is unoc-
cluded by other children of the cluster. There is no need to compute
visibility within a cluster every time we pull or push, as the geometry
and the hierarchy remain fixed. Therefore, once the cluster hierar-
chy has been created, we use a preprocessing step that computes the
internal visibility distribution V(~!) for each child. V(~!) gives the
probability that a ray leaving the child in direction ~! exits its parent
cluster without occlusion. This probability is estimated by shooting
a fixed number of rays for each directional basis function. Each ray
is tested for intersection with all the siblings of the child.

Complexity analysis: Since the patches within each clus-
ter are organized hierarchically, the expected time per ray

is O(log n), for a parent cluster whose subtree contains a
total of n patches. A cluster hierarchy containing p patches
has log p levels. It follows that a cluster at level k (the root
being level 0) is the root of a subtree with log p�k levels con-
taining 8log p�k patches (assuming a branching factor of 8).
Therefore, a ray intersection test takes time proportional to
log(8log p�k) = log p � k. There are 8k clusters at level k, so
the total time for the visibility preprocessing within clusters
is given by

c

log p�1X
k=0

8k(log p� k) � cp.

The constant c depends on the time it takes to perform a
single ray–patch intersection test, on the number of children
per cluster, on the number of rays shot per directional basis
function (four in our implementation), and on the number
of directional basis functions (thirty-two in our implemen-
tation). All of these quantities are independent of p, and
therefore the total time taken by this stage of the algorithm
is O(p).

5.4 Final gather

To render an image from a global illumination solution one could
simply assign each pixel the radiance value leaving the correspond-
ing visible point towards the eye. However, since the solution is a
piecewise-constant approximation to the radiance function, such a
rendering would produce a blocky image. Furthermore, we want a
rendering algorithm that would produce images of high visual qual-
ity even from very coarse finite-element solutions. Thus, following
the ideas that Reichert [26], Lischinski et al. [21], and Smits [34]
used for radiosity, we use a final gather step. In this step, the image
is rendered by casting rays from the eye through the pixels. At each
visible point in the scene we compute the radiance outgoing towards
the eye by gathering radiance one last time through all the links
contributing to the illumination at that point.

To perform a final gather to point x on patch r, we first evaluate the
contribution from all the patches that are linked directly to r. The
radiance coming from such a patch s that is reflected at x towards
the eye e is given byZ

s

fr(~!yx, x, ~!xe) G(x, y) L(y, ~!yx) dy.

Since x and e are fixed, the integration is only over sending posi-
tions y on patch s. This integral is approximated by sampling s, with
a number of samples proportional to the solid angle subtended by s
as seen from x. The radiance L(y, ~!yx) is given by the finite-element
solution, and visibility is evaluated using ray-casting.

Other links contributing to the illumination at x include patch-to-
cluster links to the cluster containing patch r, cluster-to-patch links
to patch r, and cluster-to-cluster links to the cluster containing r. For
a patch-to-cluster link we perform the same final gather as for links
between patches. However, in this case we use the average visibility
value stored with the link, instead of casting rays.

For cluster-to-patch and cluster-to-cluster links we randomly select
a fixed number of points y in the source cluster S. The radiance
reflected from x towards the eye due to illumination by S is given
by averaging

fr(~!yx, x, ~!xe) I(~!yx) V(x, y)
cos �xy

kx� yk2

over the point samples y. Again, visibility is estimated by the aver-
age value stored with the link.
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Figure 4 The time spent in various stages of the new method as a
function of the number of initial patches.

To produce antialiased images, we typically use sixteen samples per
pixel. The direct illumination component is typically responsible
for most of the variation in the radiance function across a pixel, so it
is evaluated at each sample. Indirect illumination, on the other hand,
often has low intensity and relatively little variation. At the same
time, it is expensive to compute, so we save time by computing it
only once per pixel, or even by re-using values over several pixels
with low variation.

It is important to note that while the final gather considerably im-
proves the visual quality of the solution, occasional visual artifacts
may still remain. For instance, a boundary between adjacent patches
may still be visible as a subtle shading discontinuity, if the link sets
of the two patches differ too much. Some faint reflections might
be missing if the corresponding energy transfer was too small to be
sufficiently refined; other faint reflections that should not be present
in the image because of occlusion might sometimes show through
due to coarse visibility approximations over coarse links. All of
these artifacts diminish as the finite-element solution becomes more
refined.

Complexity analysis: Consider the cost for one ray cast
from the eye. First, we need to find the first intersection
with a patch (point x), which we assume takes O(log p) time
on the average. Then we need to gather radiance across all
the links that contribute to the basis functions whose support
includes x. Each cluster and basis function has a constant
number of links, so the total number of links to gather from is
proportional to the depth of the hierarchy. There are O(log p)
levels of the cluster hierarchy to gather from, and for these
links visibility is computed in constant time. There are d
levels of the patch basis function hierarchy to gather from,
where d depends on the accuracy of the solution but not on p,
and each link from a patch basis function requires O(log p)
time for computing visibility. The total cost per ray from
the eye is therefore O(log p + d log p) = O(log p). Note
that the final gather, too, benefits from clustering: without
clustering the solution at a surface point x could be influ-
enced by as many as O(p) links, requiring the final gather to
spend O(p log p) time per ray from the eye.

6 Results

In this section we first experimentally verify the theoretical pre-
dictions regarding the O(p) asymptotic complexity of our method,
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Figure 5 The time spent by different clustering algorithms as a
function of the number of initial patches.

and compare its performance with that of Smits et al. Next, we
examine the accuracy and effectiveness of our cluster representa-
tion. Then, we examine the results produced by our method on a
highly glossy environment and make qualitative comparisons with
Ward’s RADIANCE system [36]. Finally, the effectiveness of the
method for complex glossy environments is demonstrated using an
architectural interior containing nearly 8000 initial surfaces.

6.1 Asymptotic behavior

Our first experiment is designed to examine the observed asymp-
totic time complexity of our method and to compare it to that of
Smits et al. Since their algorithm was designed for diffuse global
illumination, we perform the comparison using a diffuse environ-
ment. Our test environment consists of two concentric tessellated
spheres: a hollow sphere of radius 2 containing a sphere of unit
radius. Triangles on each sphere emit the same constant radiance.
This test case is similar to the one used by Smits et al., but we added
the interior sphere to test the effects of occlusion.

We timed our method on tessellations containing 256, 1024, 4096,
16,384, and 65,536 triangles. Each of the runs involved constructing
the cluster hierarchy, initializing internal visibilities for each clus-
ter, pulling, refining to a specified tolerance, transporting energy
through the links, and pushing. The graph in Figure 4 shows how
the times spent in the different stages of our method grow with the
complexity of the environment, for a fixed error tolerance. As a
reference, we have also plotted the function y = 0. 002x. This graph
demonstrates that all the stages exhibit growth that is roughly linear
in the environment size.

The graph in Figure 5 compares the total running time of our algo-
rithm to that of Smits et al. Since their algorithm ignores internal
occlusion within clusters, we omitted the time of the internal visi-
bility precomputation from the total time for our algorithm. Both
methods ran on the same machine, with the same tolerance, resulting
in roughly the same number of links in each case. The difference
in the asymptotic time complexities of the two methods is revealed
by the difference in the slopes of the two log-log plots. Note that
for the tessellation with 65,536 triangles, 
-links exhibit a speedup
by a factor of 2.5 over �-links. Since 
-links are asymptotically
more efficient than�-links, the improvement in performance should
become even larger for more complex environments.
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Figure 6 Glossy sphereflake: (a) a sketch of the geometry; (b) polar plots of cluster approximations. The solid line represents radiance evaluated
on all 728 patches. The dashed line represents the evaluation of 285 terms: radiance from 189 patches, and radiant intensity from 96 clusters.
The dotted line shows the coarsest approximation, the radiant intensity from a single cluster containing the entire sphereflake.

6.2 Accuracy of cluster approximation

To test the accuracy of the cluster approximation employed by our
method we have used a “sphereflake” [16] made of 91 spheres and
illuminated by a single square light source. A schematic view of the
model is shown in Figure 6(a). An image of the same sphereflake
(with a wood-textured polygon added behind it) is shown in Fig-
ure 7(b). The gray, cyan, magenta, and yellow spheres are diffuse;
the red, green, and blue spheres are isotropically glossy; and the
black, copper, and chrome spheres are anisotropically glossy. In
our implementation each sphere is approximated by eight Bézier
patches. In total, the sphereflake consists of 728 surface patches, of
which 432 are glossy.

A cluster hierarchy containing all of the sphereflake’s patches was
constructed as described in Section 5.1. The sphereflake was di-
rectly illuminated by a single light source, and the reflected radiance
was pulled up through the cluster hierarchy. The reflected light was
evaluated in several different ways at densely-spaced locations on
an orbit around the sphereflake. The ratio of the orbit radius to the
sphereflake radius was about 10:1. The results are shown in the
form of polar plots in Figure 6(b). The solid curve corresponds to
results obtained by directly integrating the radiance from each of the
728 patches. This curve serves as our reference solution, since no
clustering approximations were used in its computation. The coars-
est approximation is obtained by evaluating the radiant intensity
distribution leaving the cluster that contains the entire sphereflake.
Also plotted is an approximation of intermediate accuracy, where
the transfer between the sphereflake and the receiver on the orbit is
refined into 285 interactions: 189 with patches, and 96 with clusters.

As the polar plots in Figure 6 show, the approximation of the entire
sphereflake as a single cluster is fairly coarse, yet it captures the
most prominent characteristics of the radiant intensity distribution.
As the approximation is refined by evaluating more terms, many
more details are captured and the approximation becomes more
accurate.

6.3 Results for a highly glossy environment

The sphereflake model described in the previous section was also
used to test the ability of our method to correctly handle different
types of interreflections in a scene with highly glossy surfaces. One
solution computed by our method is shown in Figure 7. The finite-
element solution shown in Figure 7(a) took 26 CPU minutes to
compute on a IBM RS6000 workstation with a 100 MHz Pow-
erPC processor. Of this time, 2 minutes were spent building the
hierarchy and performing visibility preprocessing, and the remain-
ing 24 minutes were spent refining and solving. The solution has
1,545 links between clusters, 4,789 links between a patch and a
cluster, and 4,207 links between patches, which are further refined

into 189,180 interactions between 104,458 wavelet coefficients rep-
resenting the radiance in the environment.

The image in Figure 7(b) was computed using a final gather at a
resolution of 3200�3200, and then was reduced to 800�800 pixels
using a Gaussian filter. The final gather took 242 minutes in addition
to the finite-element solution time, resulting in total computation
time of 4.5 hours.

A careful examination of Figure 7 reveals that all of the possi-
ble combinations of diffuse and glossy transport mechanisms are
present. Diffuse-to-diffuse transport creates subtle yellow, blue, and
red color bleeding on the large gray sphere. Diffuse-to-specular
transport creates the reflection of the diffuse spheres in the shiny
ones. Specular-to-specular transport creates the reflections of high-
lights in the shiny spheres. Finally, specular-to-diffuse transport
illuminates the base of the small yellow sphere near the top of the
image.

6.4 Comparison with a Monte Carlo method

A qualitative comparison of our method and the RADIANCE sys-
tem [36] was performed using the sphereflake scene described
above. Both methods were used on the same machine to compute
images at 3200 � 3200 resolution, and then the images were re-
duced to 800 � 800 pixels using a Gaussian filter. The RADIANCE
system took 6.2 CPU hours, resulting in the image shown in Fig-
ure 8(a). After 4.7 CPU hours, our method produced the image in
Figure 8(b)1. Note that the RADIANCE system had the advantage
of performing all its computations with 91 spheres, while in our
solution these spheres were represented as 728 Bézier patches. We
did, however, use spheres for visibility rays.

Figure 8 clearly shows that our solution and that of RADIANCE
converge toward the same final result. While RADIANCE is a mature
product that has been debugged and optimized over the past decade,
clustering and wavelet techniques for glossy global illumination
are still in their infancy. Undoubtedly, our method could benefit
enormously from further algorithmic refinement and fine-tuning,
and our implementation could benefit from further debugging and
optimization. Our conclusion from this experiment is that hierarchi-
cal finite-element methods are a viable and promising alternative to
Monte Carlo for efficiently simulating glossy global illumination.

6.5 A complex interior

To test the effectiveness of our clustering method for complex
glossy environments, we experimented with the architectural inte-
rior environment shown in Figure 9. This environment consists of

1This is the same image as in Figure 7(b).
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(a) (b)

Figure 7 A sphereflake computed using our method: (a) finite-element solution; (b) after final gather.

(a) (b)

Figure 8 A comparison of sphereflake images: (a) image computed in 6.2 hours using RADIANCE; (b) image computed in 4.5 hours using our method.
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(a) (d)

(b) (e)

(c) (f)

Figure 9 A room with both glossy and diffuse surfaces: (a–c) finite-element solutions computed by our method; (d–f) the same solutions after
a final gather (local pass).
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solution final gather
image coefficients interactions time time
(a, d) 7,711 115,880 19 min 340 min
(b, e) 93,855 327,156 43 min 492 min
(c, f) 243,634 697,570 62 min 565 min

Table 1 Statistics for Figure 9. Times were measured on a DEC
Alpha 3000/500X workstation.

7,711 patches: 7,643 quadrilaterals, and 68 Bézier patches. The
teapot, mug, table top, door, doorknob, window frames, plant, and
pot all have reflectances that are partially glossy and partially dif-
fuse, giving a total of 6,629 glossy surfaces. The remaining surfaces
are purely diffuse. The room is illuminated by a single diffuse area
light source.

A solution without clustering requires 7, 7112
� 60, 000, 000 po-

tential interactions to be considered in the initial linking stage. In
an attempt to compute such a solution, we ran out of virtual memory
after 14 CPU hours, having created 1,850,176 initial links. We esti-
mate that if we had enough memory (4 gigabytes) this computation
would take 5 CPU days, just for the initial links and without any
further link refinement. By contrast, a coarse solution was obtained
after less than 19 minutes with our clustering algorithm. A cluster
hierarchy consisting of 1629 clusters was constructed during the
first 4 minutes, and the remaining 15 minutes were spent creating
initial links and computing the solution shown in Figure 9(a). Of
115,880 total links in this solution, only 18,004 link two patches
directly. Two more refined solutions are shown in Figures 9(b)
and (c). Statistics for each of these solutions are reported in Table 1.

A final gather pass was performed on these solutions; the resulting
images are shown in Figure 9(d-f). The images were rendered at
a resolution of 900 � 600 pixels with sixteen rays per pixel. The
final gather pass is by far the most time consuming stage of the sim-
ulation, due to the brute-force sampling strategies that our current
implementation employs when gathering energy through links. We
leave as future work the problem of optimizing this process; we
believe that drastic improvements should be possible.

The final gather is able to produce an image of high quality even
for the coarsest global solution: all the direct illumination, including
shadows and specular highlights, and the textures are present. How-
ever, the coarsest solution does not yet have any direct links between
the teapot’s patches and the table top. The table top does receive
light from the teapot, but this light is transferred via several cluster-
to-patch links, as evidenced by the disjoint yellow reflections on the
table top in Figure 9(d).

In the second solution, both the teapot and the table top have been
refined, and direct interactions between the teapot’s patches and the
table top have been created. As a result, both the illumination on
the teapot and the teapot’s reflection on the table top are much more
accurate in Figure 9(e). In the third solution, these surfaces and
the transport between them are refined even further, and the reflec-
tion of the teapot on the table top is evident even before the final
gather (Figure 9(c)). This progression of solutions demonstrates
that our method lends itself to progressive image generation, with
useful solutions available relatively early in the process.

7 Conclusion

We have presented a clustering method for efficiently simulating
glossy global illumination in complex scenes. The algorithm ap-
proximates light leaving a collection of patches as radiant intensity
emanating from a point, and estimates a bound on the error associ-
ated with this approximation. As in previous methods for clustering
(in purely diffuse environments), the objective of this approxima-

tion is to avoid the quadratic cost of initial linking. Because our
clustering algorithm has a time complexity that is only linear in
the number of initial surfaces, it is arguably the first finite-element
method capable of handling complex glossy environments. Further-
more, our algorithm’s linear time complexity makes it asymptoti-
cally faster than previous clustering methods for diffuse environ-
ments [33], as confirmed by the results of our experiments.

A similar clustering approach has been concurrently and indepen-
dently investigated by Sillion et al. [31]. Their algorithm also repre-
sents the radiance leaving a cluster by means of a directional distri-
bution. One important difference between the two algorithms is that
while ours uses a piecewise-constant basis to represent directional
distributions, Sillion et al. use spherical harmonics, which provide
a continuous representation, but are considerably more expensive.
Another difference is that Sillion et al. only store outgoing radiance
as a directional distribution; incoming light is pushed directly down
the cluster hierarchy until it reaches the patches. This means that
their algorithm’s asymptotic complexity is still O(p log p). At this
time we are unable to compare the actual performance of the two
algorithms, as Sillion et al. describe a preliminary implementation
of their algorithm, and do not report results on complex glossy
scenes.

There are a number of aspects of our algorithm that require further
research. The refinement strategy described in Section 4.2 is not
very sophisticated. Ideally, we would like to predict which end of a
cluster-to-cluster link to refine in order to get the most improvement
in the solution. It may also be advantageous to create links from
clusters directly to basis functions within individual patches, which
our current implementation does not allow. In addition, the images
in Figure 9 raise the question of how much work should be done in
the global illumination pass before the final gather takes place.

Another natural extension to our algorithm would be to use a mu-
tiresolution representation for the cluster’s directional distributions,
instead of the current uniresolution representation. So long as the
size of this representation is bounded by a constant, the asymptotic
complexity of our method should not be affected. However, more
sophisticated refinement strategies would have to be devised for
deciding whether to refine a cluster link by pushing the link to the
cluster’s children or by refining the cluster’s directional representa-
tion.

In this paper, we have demonstrated that the finite-element solu-
tion method, in combination with hierarchical techniques such as
wavelet bases, clustering, and importance-driven refinement, shows
great promise for the glossy global illumination problem. Our clus-
tering algorithm could also be used to improve other global illumi-
nation methods. For instance, it could be used as the first pass in the
progressive multipass method of Chen et al. [6], or to provide a sys-
tem like RADIANCE [36] with a function for importance sampling.

In summary, there has been a long progression of finite-element
algorithms for global illumination over the last decade, starting with
a dense matrix solution [13], and continuing through progressive,
hierarchical, multiresolution, and finally clustering methods. Each
of these algorithms has been described in detail, first for diffuse
environments, and later for the more difficult nondiffuse case—with
one notable exception: clustering. The work presented here fills
this last gap, providing a hierarchical glossy global illumination
algorithm with clustering for complex environments.
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